1
|
Nagu P, Sharma V, Behl T, Pathan AKA, Mehta V. Molecular Insights to the Wnt Signaling During Alzheimer's Disorder: a Potential Target for Therapeutic Interventions. J Mol Neurosci 2022; 72:679-690. [PMID: 34997460 DOI: 10.1007/s12031-021-01940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
In the adult brain, Wnt signaling is crucial for neurogenesis, and it also regulates neuronal development, neuronal maturation, neuronal differential, and proliferation. Impaired Wnt signaling pathways are associated with enhanced levels of amyloid-β, reduced β-catenin levels, and increased expression of GSK-3β enzyme, suggesting its direct association with the pathogenesis of Alzheimer's disorder (AD). These findings are consolidated by reports where activation of Wnt signaling by genetic factors and pharmacological intervention has improved the cognitive functions in animals and restored neurogenesis in the adult brain. Various natural and synthetic molecules have been identified that modulate Wnt signaling in the adult brain and promote neurogenesis and alleviate behavioral dysfunction. These molecules include lithium, valproic acid, ethosuximide, selenomethionine, curcumin, andrographolide, xanthoceraside, huperzine A, pyridostigmine, ginkgolide-B, ricinine, cannabidiol, and resveratrol. These molecules are associated with the DKK1 and GSK-3β inhibition and β-catenin stabilization along with their effects on neurogenesis, neuronal proliferation, and differentiation in the hippocampus through modulation of Wnt signaling and thereby could prove beneficial in the management of AD pathogenesis. Although modulation of the Wnt signaling seems to suggest to be promising in the management of AD, unfortunately, most of the literature available for the association of Wnt signaling and AD pathogenesis is either from preclinical studies or post-mortem brain. Therefore, it will be interesting to understand the role of Wnt signaling in AD patients, and a rigorous investigation could provide us with a better understanding of AD pathogenesis and the identification of novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.,Department of Pharmaceutics, Government College of Pharmacy, Rohru, Himachal Pradesh, India
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amjad Khan A Pathan
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India.
| |
Collapse
|
2
|
Fazel Darbandi S, Robinson Schwartz SE, Pai ELL, Everitt A, Turner ML, Cheyette BNR, Willsey AJ, State MW, Sohal VS, Rubenstein JLR. Enhancing WNT Signaling Restores Cortical Neuronal Spine Maturation and Synaptogenesis in Tbr1 Mutants. Cell Rep 2021; 31:107495. [PMID: 32294447 PMCID: PMC7473600 DOI: 10.1016/j.celrep.2020.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Tbr1 is a high-confidence autism spectrum disorder (ASD)
gene encoding a transcription factor with distinct pre- and postnatal functions.
Postnatally, Tbr1 conditional knockout (CKO) mutants and
constitutive heterozygotes have immature dendritic spines and reduced synaptic
density. Tbr1 regulates expression of several genes that
underlie synaptic defects, including a kinesin (Kif1a) and a
WNT-signaling ligand (Wnt7b). Furthermore,
Tbr1 mutant corticothalamic neurons have reduced thalamic
axonal arborization. LiCl and a GSK3β inhibitor, two WNT-signaling
agonists, robustly rescue the dendritic spines and the synaptic and axonal
defects, suggesting that this could have relevance for therapeutic approaches in
some forms of ASD. Fazel Darbandi et al. demonstrate that TBR1 directly regulates
transcriptional circuits in cortical layers 5 and 6, which promote dendritic
spine and synaptic density. Enhancing WNT signaling rescues dendritic spine
maturation and synaptogenesis defects in Tbr1 mutants. These
results provide insights into mechanisms that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah E Robinson Schwartz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Ling-Lin Pai
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marc L Turner
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas S Sohal
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Khosa S, Trikamji B, Khosa GS, Khanli HM, Mishra SK. An Overview of Neuromuscular Junction Aging Findings in Human and Animal Studies. Curr Aging Sci 2020; 12:28-34. [PMID: 31161982 PMCID: PMC6971950 DOI: 10.2174/1874609812666190603165746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Background: Aging is a complex irreversible process that is not only related to an individual’s genetic make-up but also to lifestyle choices and environmental exposures. Like every other structure in human body, the Neuromuscular Junction (NMJ) is not averse to aging. Objectives: The prime objective is to analyse the microscopic and macroscopic changes at the NMJs with aging. Methods: For the purpose of review we evaluated data from resources like Pubmed, Ovid, UCLA libraries and USC libraries. Results: We review various morphological, physiological, immunological, and biochemical changes in NMJs with aging and their management. Conclusion: The alterations in NMJs secondary to aging are inevitable. It is vital that neurologists clearly understand the pathophysiology of NMJ aging and differentiate between physiological and pathological effects of aging. With the current knowledge of science, the changes in NMJ aging can be better prevented rather than cured.
Collapse
Affiliation(s)
- Shaweta Khosa
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Bhavesh Trikamji
- Department of Neurology, Harbor UCLA Medical Center, Torrance, CA 90502, United States
| | - Gurveer S Khosa
- Department of Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Hadi M Khanli
- Department of Neurology, George Washington University, Washington, DC 20052, United States
| | - Shri K Mishra
- Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|
4
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
5
|
Yook C, Kim K, Kim D, Kang H, Kim SG, Kim E, Kim SY. A TBR1-K228E Mutation Induces Tbr1 Upregulation, Altered Cortical Distribution of Interneurons, Increased Inhibitory Synaptic Transmission, and Autistic-Like Behavioral Deficits in Mice. Front Mol Neurosci 2019; 12:241. [PMID: 31680851 PMCID: PMC6797848 DOI: 10.3389/fnmol.2019.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1+/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1+/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1+/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1+/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.
Collapse
Affiliation(s)
- Chaehyun Yook
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeongnam University, Gyeongsan, South Korea
| |
Collapse
|
6
|
Kapitansky O, Gozes I. ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience 2019; 41:321-340. [PMID: 31264075 DOI: 10.1007/s11357-019-00079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for embryonic development with ADNP mutations leading to syndromic autism, coupled with intellectual disabilities and motor developmental delays. Here, mining human muscle gene-expression databases, we have investigated the association of ADNP transcripts with muscle aging. We discovered increased ADNP and its paralogue ADNP2 expression in the vastus lateralis muscle of aged compared to young subjects, as well as altered expression of the ADNP and the ADNP2 genes in bicep brachii muscle of elderly people, in a sex-dependent manner. Prolonged exercise resulted in decreased ADNP expression, and increased ADNP2 expression in an age-dependent manner in the vastus lateralis muscle. ADNP expression level was further correlated with 49 genes showing age-dependent changes in muscle transcript expression. A high degree of correlation with ADNP was discovered for 24 genes with the leading gene/protein being NMNAT1 (nicotinamide nucleotide adenylyl transferase 1). Looking at correlations differentiating the young and the old muscles and comparing protein interactions revealed an association of ADNP with the cell division cycle 5-like protein (CDC5L), and an aging-muscle-related interactive pathway in the vastus lateralis. In the bicep brachii, very high correlation was detected with genes associated with immune functions as well as mitochondrial structure and function among others. Taken together, the results suggest a direct association of ADNP with muscle strength and implicate ADNP fortification in the protection against age-associated muscle wasting.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
7
|
Buechler J, Salinas PC. Deficient Wnt Signaling and Synaptic Vulnerability in Alzheimer's Disease: Emerging Roles for the LRP6 Receptor. Front Synaptic Neurosci 2018; 10:38. [PMID: 30425633 PMCID: PMC6218458 DOI: 10.3389/fnsyn.2018.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Synapse dysfunction and loss represent critical early events in the pathophysiology of Alzheimer’s disease (AD). While extensive research has elucidated the direct synaptotoxic effects of Amyloid-β (Aβ) oligomers, less is known about how signaling pathways at the synapse are affected by Aβ. A better understanding of the cellular and molecular mechanisms underlying synaptic vulnerability in AD is key to illuminating the determinants of AD susceptibility and will unveil novel therapeutic avenues. Canonical Wnt signaling through the Wnt co-receptor LRP6 has a critical role in maintaining the structural and functional integrity of synaptic connections in the adult brain. Accumulating evidence suggests that deficient Wnt signaling may contribute to AD pathology. In particular, LRP6 deficiency compromises synaptic function and stability, and contributes to Aß production and plaque formation. Here, we review the role of Wnt signaling for synaptic maintenance in the adult brain and the contribution of aberrant Wnt signaling to synaptic degeneration in AD. We place a focus on emerging evidence implicating the LRP6 receptor as an important modulator of AD risk and pathology.
Collapse
Affiliation(s)
- Johanna Buechler
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Amyloid β synaptotoxicity is Wnt-PCP dependent and blocked by fasudil. Alzheimers Dement 2017; 14:306-317. [PMID: 29055813 PMCID: PMC5869054 DOI: 10.1016/j.jalz.2017.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/13/2017] [Accepted: 09/07/2017] [Indexed: 01/18/2023]
Abstract
Introduction Synapse loss is the structural correlate of the cognitive decline indicative of dementia. In the brains of Alzheimer's disease sufferers, amyloid β (Aβ) peptides aggregate to form senile plaques but as soluble peptides are toxic to synapses. We previously demonstrated that Aβ induces Dickkopf-1 (Dkk1), which in turn activates the Wnt–planar cell polarity (Wnt-PCP) pathway to drive tau pathology and neuronal death. Methods We compared the effects of Aβ and of Dkk1 on synapse morphology and memory impairment while inhibiting or silencing key elements of the Wnt-PCP pathway. Results We demonstrate that Aβ synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA and ROCK, and can be blocked by the drug fasudil. Discussion Our data add to the importance of aberrant Wnt signaling in Alzheimer's disease neuropathology and indicate that fasudil could be repurposed as a treatment for the disease. Aβ synaptotoxicity is Dickkopf-1 and Wnt-PCP dependent. The Wnt-PCP pathway drives Aβ-driven synapse loss via RhoA and ROCK. ROCK inhibitor fasudil blocks Aβ-driven synapse loss and cognitive impairment. Fasudil should be assessed for repurposing for Alzheimer's disease.
Collapse
|
9
|
Ivanova OY, Dobryakova YV, Salozhin SV, Aniol VA, Onufriev MV, Gulyaeva NV, Markevich VA. Lentiviral Modulation of Wnt/β-Catenin Signaling Affects In Vivo LTP. Cell Mol Neurobiol 2017; 37:1227-1241. [PMID: 28012021 DOI: 10.1007/s10571-016-0455-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022]
Abstract
Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910-11916, 2006; Vargas et al. in J Neurosci 34:2191-2202, 2014, Vargas et al. in Exp Neurol 264:14-25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/β-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, β-catenin, and phGSK-3β levels. A gain-of-function study revealed not only an increase in PSD-95, β-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3β level and enhanced GSK-3β kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/β-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.
Collapse
Affiliation(s)
- Olga Ya Ivanova
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation.
| | - Yulia V Dobryakova
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| | - Sergey V Salozhin
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| | - Viktor A Aniol
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| | - Mikhail V Onufriev
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| | - Natalia V Gulyaeva
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| | - Vladimir A Markevich
- Neurophysiology of Learning Lab, Functional Biochemistry of the Nervous System Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Butlerova Str. 5a, 117485, Moscow, Russian Federation
| |
Collapse
|
10
|
Brafman D, Willert K. Wnt/β-catenin signaling during early vertebrate neural development. Dev Neurobiol 2017; 77:1239-1259. [PMID: 28799266 DOI: 10.1002/dneu.22517] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell-cell contact, cell-matrix interactions, and cell-growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239-1259, 2017.
Collapse
Affiliation(s)
- David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, 92093-0695
| |
Collapse
|
11
|
Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 2017; 94:304-311.e4. [PMID: 28426965 PMCID: PMC5418202 DOI: 10.1016/j.neuron.2017.03.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.
Collapse
|
12
|
Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans. Genetics 2017; 206:1521-1534. [PMID: 28515212 PMCID: PMC5500148 DOI: 10.1534/genetics.116.195297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this study, we elucidate the molecular and functional mechanism of RIG-3. We demonstrate by genetic and BiFC (Bi-molecular Fluorescence Complementation) assays that presynaptic RIG-3 functions by directly interacting with the immunoglobulin domain of the nonconventional Wnt receptor, ROR receptor tyrosine kinase (RTK), CAM-1, which functions in postsynaptic body-wall muscles. This interaction in turn inhibits Wnt/LIN-44 signaling through the ROR/CAM-1 receptor, and allows for maintenance of normal acetylcholine receptor, AChR/ACR-16, levels at the neuromuscular synapse. Further, this work reveals that RIG-3 and ROR/CAM-1 function through the β-catenin/HMP-2 at the NMJ. Taken together, our results demonstrate that RIG-3 functions as an inhibitory molecule of the Wnt/LIN-44 signaling pathway through the RTK, CAM-1.
Collapse
|
13
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|
14
|
Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L, Virshup DM. Wnt proteins synergize to activate β-catenin signaling. J Cell Sci 2017; 130:1532-1544. [PMID: 28289266 DOI: 10.1242/jcs.198093] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Wnt ligands are involved in diverse signaling pathways that are active during development, maintenance of tissue homeostasis and in various disease states. While signaling regulated by individual Wnts has been extensively studied, Wnts are rarely expressed alone, and the consequences of Wnt gene co-expression are not well understood. Here, we studied the effect of co-expression of Wnts on the β-catenin signaling pathway. While some Wnts are deemed 'non-canonical' due to their limited ability to activate β-catenin when expressed alone, unexpectedly, we find that multiple Wnt combinations can synergistically activate β-catenin signaling in multiple cell types. WNT1- and WNT7B-mediated synergistic Wnt signaling requires FZD5, FZD8 and LRP6, as well as the WNT7B co-receptors GPR124 (also known as ADGRA2) and RECK. Unexpectedly, this synergistic signaling occurs downstream of β-catenin stabilization, and is correlated with increased lysine acetylation of β-catenin. Wnt synergy provides a general mechanism to confer increased combinatorial control over this important regulatory pathway.
Collapse
Affiliation(s)
- Anshula Alok
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Zhengdeng Lei
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 169857 Singapore
| | - N Suhas Jagannathan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 169857 Singapore
| | - Simran Kaur
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Nathan Harmston
- Centre for Computational Biology, Duke-NUS Medical School, 169857 Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 169857 Singapore
| | - Lisa Tucker-Kellogg
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 169857 Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore .,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
15
|
Kwan V, Unda BK, Singh KK. Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord 2016; 8:45. [PMID: 27980692 PMCID: PMC5137220 DOI: 10.1186/s11689-016-9176-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Background Genetic factors play a major role in the risk for neurodevelopmental disorders such as autism spectrum disorders (ASDs) and intellectual disability (ID). The underlying genetic factors have become better understood in recent years due to advancements in next generation sequencing. These studies have uncovered a vast number of genes that are impacted by different types of mutations (e.g., de novo, missense, truncation, copy number variations). Abstract Given the large volume of genetic data, analyzing each gene on its own is not a feasible approach and will take years to complete, let alone attempt to use the information to develop novel therapeutics. To make sense of independent genomic data, one approach is to determine whether multiple risk genes function in common signaling pathways that identify signaling “hubs” where risk genes converge. This approach has led to multiple pathways being implicated, such as synaptic signaling, chromatin remodeling, alternative splicing, and protein translation, among many others. In this review, we analyze recent and historical evidence indicating that multiple risk genes, including genes denoted as high-confidence and likely causal, are part of the Wingless (Wnt signaling) pathway. In the brain, Wnt signaling is an evolutionarily conserved pathway that plays an instrumental role in developing neural circuits and adult brain function. Conclusions We will also review evidence that pharmacological therapies and genetic mouse models further identify abnormal Wnt signaling, particularly at the synapse, as being disrupted in ASDs and contributing to disease pathology.
Collapse
Affiliation(s)
- Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| | - Brianna K Unda
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| |
Collapse
|
16
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 2015; 142:1818-30. [PMID: 25926357 PMCID: PMC4440923 DOI: 10.1242/dev.115568] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Neurogenesis/physiology
- Neurons/cytology
- Neurons/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Ania Dabrowski
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cameron Strong
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
18
|
Hanson MG, Niswander LA. An explant muscle model to examine the refinement of the synaptic landscape. J Neurosci Methods 2014; 238:95-104. [PMID: 25251554 DOI: 10.1016/j.jneumeth.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 01/14/2023]
Abstract
Signals from nerve and muscle regulate the formation of synapses. Transgenic mouse models and muscle cell cultures have elucidated the molecular mechanisms required for aggregation and stabilization of synaptic structures. However, far less is known about the molecular pathways involved in redistribution of muscle synaptic components. Here we established a physiologically viable whole-muscle embryonic explant system, in the presence or absence of the nerve, which demonstrates the synaptic landscape is dynamic and malleable. Manipulations of factors intrinsic to the muscle or extrinsically provided by the nerve illustrate vital functions during formation, redistribution and elimination of acetylcholine receptor (AChR) clusters. In particular, RyR1 activity is an important mediator of these functions. This physiologically relevant and readily accessible explant system provides a new approach to genetically uncouple nerve-derived signals and for manipulation via signaling molecules, drugs, and electrical stimulation to examine early formation of the neuromuscular circuit.
Collapse
Affiliation(s)
- Martin Gartz Hanson
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States.
| | - Lee A Niswander
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
19
|
Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014; 6:208. [PMID: 25157231 PMCID: PMC4127816 DOI: 10.3389/fnagi.2014.00208] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA
| | - Stephanie A Studenski
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| |
Collapse
|