1
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Mi S, Chang Z, Wang X, Gao J, Liu Y, Liu W, He W, Qi Z. Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote In Situ Centralis Neuroplasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16355-16368. [PMID: 36958016 DOI: 10.1021/acsami.2c19607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spinal cord injury (SCI), one of the most serious injuries of the central nervous system, causes physical functional dysfunction and even paralysis in millions of patients. As a matter of necessity, redressing the neuroleptic pathologic microenvironment to a neurotrophic microenvironment is essential in order to alleviate this dilemma and facilitate the recovery of the spinal cord. Herein, based on cell-sheet technology, two functional cell types─uninduced and neural-induced stem cells from human exfoliated deciduous teeth─were formed into a composite membrane that subsequently self-assembled to form a bioactive scaffold with a spinal-cord-like structure, called a spinal cord assembly (SCA). In a stable extracellular matrix microenvironment, SCA continuously released SCA-derived exosomes containing various neurotrophic factors, which effectively promoted neuronal regeneration, axonal extension, and angiogenesis and inhibited glial scar generation in a rat model of SCI. Neurotrophic exosomes significantly improved the pathological microenvironment and promoted in situ centralis neuroplasticity, ultimately eliciting a strong repair effect in this model. SCA therapy is a promising strategy for the effective treatment of SCI based on neurotrophic exosome delivery.
Collapse
Affiliation(s)
- Sisi Mi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Wang
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Yang P, Sun X, Kou ZW, Wu KW, Huang YL, Sun FY. VEGF Axonal Transport Dependent on Kinesin-1B and Microtubules Dynamics. Front Mol Neurosci 2017; 10:424. [PMID: 29311814 PMCID: PMC5742618 DOI: 10.3389/fnmol.2017.00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023] Open
Abstract
Axon-transport plays an important role in neuronal activity and survival. Reduced endogenous VEGF can cause neuronal damage and axon degeneration. It is unknown at this time if VEGF can be transported within the axon or whether it can be released by axonal depolarization. We transfected VEGF-eGFP plasmids in cultured hippocampal neurons and tracked their movement in the axons by live-cell confocal imaging. Then, we co-transfected phVEGF-eGFP and kinesin-1B-DsRed vectors into neurons and combined with immunoprecipitation and two-color imaging to study the mechanism of VEGF axon-trafficking. We found that VEGF vesicles morphologically co-localized and biochemically bounded with kinesin-1B, as well as co-trafficked with it in the axons. Moreover, the capacity for axonal trafficking of VEGF was reduced by administration of nocodazole, an inhibitor of microtubules, or kinesin-1B shRNA. In addition, we found that VEGF could release from the cultured neurons under acute depolarizing stimulation with potassium chloride. Therefore, present findings suggest that neuronal VEGF is stored in the vesicles, actively released, and transported in the axons, which depends on the presence of kinesin-1B and functional microtubules. These results further help us to understand the importance of neuronal VEGF in the maintenance of neuronal activity and survival throughout life.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao Sun
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zeng-Wei Kou
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Wei Wu
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ya-Lin Huang
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng-Yan Sun
- Department of Neurobiology, Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|