1
|
Hamden JE, Salehzadeh M, Bajaj H, Li MX, Soma KK. Lipopolysaccharide differentially alters systemic and brain glucocorticoid levels in neonatal and adult mice. J Neuroendocrinol 2025; 37:e13481. [PMID: 39694531 PMCID: PMC11791005 DOI: 10.1111/jne.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Glucocorticoids (GCs) are secreted by the adrenal glands and increase in response to stressors (e.g., infection). The brain regulates local GC levels via GC synthesis, regeneration and/or metabolism. Little is known about local GC regulation within discrete brain regions at baseline or in response to stress. We treated male and female C57BL/6J mice at postnatal day 5 (PND5) or PND90 with lipopolysaccharide (LPS; 50 μg/kg bw i.p.) or vehicle and collected blood and brain after 4 h. We microdissected the prefrontal cortex, hippocampus, hypothalamus and amygdala. We measured seven steroids, including corticosterone, via liquid chromatography-tandem mass spectrometry and measured transcripts for key steroidogenic enzymes (Cyp11b1, Hsd11b1, Hsd11b2) via qPCR. At both ages, LPS increased GC levels in blood and all brain regions; however, the increases were much greater at PND90 than at PND5. Interestingly, PND5 corticosterone levels were lower in prefrontal cortex than in blood, but higher in amygdala than in blood. These changes in corticosterone levels align with local changes in steroidogenic enzyme expression, demonstrating robust regional heterogeneity and a possible mechanism for the region-specific effects of early-life stress. In contrast, PND90 corticosterone levels were lower in all brain regions than in blood and similar among regions, and steroidogenic enzyme mRNA levels were generally not affected by LPS. Together, these data indicate that local GC levels within discrete brain regions are more heterogeneous at baseline and in response to LPS at PND5 than at PND90, as a result of increased local GC production and metabolism in the neonatal brain.
Collapse
Affiliation(s)
- Jordan E. Hamden
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hitasha Bajaj
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Sullivan O, Sie C, Ng KM, Cotton S, Rosete C, Hamden JE, Singh AP, Lee K, Choudhary J, Kim J, Yu H, Clayton CA, Carranza Garcia NA, Voznyuk K, Deng BD, Plett N, Arora S, Ghezzi H, Huan T, Soma KK, Yu JPJ, Tropini C, Ciernia AV. Early-life gut inflammation drives sex-dependent shifts in the microbiome-endocrine-brain axis. Brain Behav Immun 2024; 125:117-139. [PMID: 39674560 DOI: 10.1016/j.bbi.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Despite recent advances in understanding the connection between the gut microbiota and the adult brain, significant knowledge gaps remain regarding how gut inflammation affects brain development. We hypothesized that gut inflammation during early life would negatively affect neurodevelopment by disrupting microbiota communication to the brain. We therefore developed a novel pediatric chemical model of inflammatory bowel disease (IBD), an incurable condition affecting millions of people worldwide. IBD is characterized by chronic intestinal inflammation, and is associated with comorbid symptoms such as anxiety, depression and cognitive impairment. Notably, 25% of patients with IBD are diagnosed during childhood, and the effects of chronic inflammation during this critical developmental period remain poorly understood. This study investigated the effects of early-life gut inflammation induced by DSS (dextran sulfate sodium) on a range of microbiota, endocrine, and behavioral outcomes, focusing on sex-specific impacts. DSS-treated mice exhibited increased intestinal inflammation and altered microbiota membership, which correlated with changes in microbiota-derived circulating metabolites. The majority of behavioral measures were unaffected, with the exception of impaired mate-seeking behaviors in DSS-treated males. DSS-treated males also showed significantly smaller seminal vesicles, lower circulating androgens, and decreased intestinal hormone-activating enzyme activity compared to vehicle controls. In the brain, DSS treatment led to chronic, sex-specific alterations in microglial morphology. These results suggest that early-life gut inflammation causes changes in gut microbiota composition, affecting short-chain fatty acid (SCFA) producers and glucuronidase (GUS) activity, correlating with altered SCFA and androgen levels. The findings highlight the developmental sensitivity to inflammation-induced changes in endocrine signalling and emphasize the long-lasting physiological and microbiome changes associated with juvenile IBD.
Collapse
Affiliation(s)
- Olivia Sullivan
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Claire Sie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Katharine M Ng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sophie Cotton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jordan E Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Ajay Paul Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristen Lee
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jatin Choudhary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Charlotte A Clayton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | | | - Kateryna Voznyuk
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Brian D Deng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Nadine Plett
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Sana Arora
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Hans Ghezzi
- Department of Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver Canada
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carolina Tropini
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Wu RS, Hamden JE, Salehzadeh M, Li MX, Poudel A, Schmidt KL, Kobor MS, Soma KK. Steroid profiling in human primary teeth via liquid chromatography-tandem mass spectrometry for long-term retrospective steroid measurement. PLoS One 2024; 19:e0309478. [PMID: 39197060 PMCID: PMC11357110 DOI: 10.1371/journal.pone.0309478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Steroid hormones are important modulators of many physiological processes, and measurements of steroids in blood, saliva, and urine matrices are widely used to assess endocrine pathologies and stress. However, these matrices cannot be used to retrospectively assess early-life stress and developmental endocrine pathologies, because they do not integrate steroid levels over the long term. A novel biological matrix in which to measure steroids is primary teeth (or "baby teeth"). Primary teeth develop early in life and accumulate various endogenous molecules during their gradual formation. Here, we developed and validated the first assay to measure steroids in human primary teeth using liquid chromatography-tandem spectrometry (LC-MS/MS). Our assay is highly sensitive, specific, accurate, and precise. It allows for the simultaneous quantification of 17 steroids in primary teeth (16 of which have not been examined previously in primary teeth). Overall, steroid levels in primary teeth were relatively low, and 8 steroids were quantifiable. Levels of dehydroepiandrosterone, cortisol, and progesterone were the highest of the 17 steroids examined. Next, we used this assay to perform steroid profiling in primary teeth from males and females. The same 8 steroids were quantifiable, and no sex differences were found. Levels of androgens (androstenedione and testosterone) were positively correlated, and levels of glucocorticoids (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone) were also positively correlated. These data demonstrate that multiple steroids can be quantified by LC-MS/MS in human primary teeth, and this method potentially provides a powerful new way to retrospectively assess early-life stress and developmental endocrine pathologies.
Collapse
Affiliation(s)
- Ruolan S. Wu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jordan E. Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Asmita Poudel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kim L. Schmidt
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Lai W, Huang S, Liu J, Zhou B, Yu Z, Brown J, Hong G. Toll-like receptor 4-dependent innate immune responses are mediated by intracrine corticosteroids and activation of glycogen synthase kinase-3β in astrocytes. FASEB J 2024; 38:e23781. [PMID: 38941212 DOI: 10.1096/fj.202301923rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11β-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11β-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3β, activation of NF-κB, and the GSK-3β-dependent increases of C3, IL-1β, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3β-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11β-HSD1, NF-κB, C3 and IL-1β, decreased astrocytic p-Ser9GSK-3β in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3β/NF-κB signaling.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Siying Huang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| |
Collapse
|
5
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Vagnerová K, Jágr M, Mekadim C, Ergang P, Sechovcová H, Vodička M, Olša Fliegerová K, Dvořáček V, Mrázek J, Pácha J. Profiling of adrenal corticosteroids in blood and local tissues of mice during chronic stress. Sci Rep 2023; 13:7278. [PMID: 37142643 PMCID: PMC10160118 DOI: 10.1038/s41598-023-34395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Stress increases plasma concentrations of corticosteroids, however, their tissue levels are unclear. Using a repeated social defeat paradigm, we examined the impact of chronic stress on tissue levels of corticosterone (CORT), progesterone (PROG), 11-deoxycorticosterone (11DOC) and 11-dehydrocorticosterone (11DHC) and on gut microbiota, which may reshape the stress response. Male BALB/c mice, liquid chromatography-tandem mass spectrometry and 16S RNA gene sequencing were used to screen steroid levels and fecal microbiome, respectively. Stress induced greater increase of CORT in the brain, liver, and kidney than in the colon and lymphoid organs, whereas 11DHC was the highest in the colon, liver and kidney and much lower in the brain and lymphoid organs. The CORT/11DHC ratio in plasma was similar to the brain but much lower in other organs. Stress also altered tissue levels of PROG and 11DOC and the PROG/11DOC ratio was much higher in lymphoid organs that in plasma and other organs. Stress impacted the β- but not the α-diversity of the gut microbiota and LEfSe analysis revealed several biomarkers associated with stress treatment. Our data indicate that social defeat stress modulates gut microbiota diversity and induces tissue-dependent changes in local levels of corticosteroids, which often do not reflect their systemic levels.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Prague, Czech Republic
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | | | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Kim SA, Jang EH, Lee J, Cho SH. Neonatal Exposure to Valproate Induces Long-Term Alterations in Steroid Hormone Levels in the Brain Cortex of Prepubertal Rats. Int J Mol Sci 2023; 24:ijms24076681. [PMID: 37047656 PMCID: PMC10094755 DOI: 10.3390/ijms24076681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Valproic acid (VPA) is a known drug for treating epilepsy and mood disorders; however, it is not recommended for pregnant women because of its possible teratogenicity. VPA affects neurotransmission and gene expression through epigenetic mechanisms by acting as a histone deacetylase inhibitor and has been used to establish animal models of autism spectrum disorder (ASD). However, studies on the long-term effects of early exposure to VPA on glucocorticoid and neurosteroid synthesis in the brain are lacking. Therefore, this study aimed to investigate the long-term changes in metabolic alterations and gene expression regulation according to sex, using metabolic steroid profiling data from cerebral cortex samples of rats four weeks after VPA exposure (400 mg/kg). In neonatal VPA-exposed models, estradiol levels decreased, and cytochrome P450 19A1 gene (Cyp19a1) expression was reduced in the prepubertal male cortex. Progesterone and allopregnanolone levels decreased, and 3β-hydroxysteroid dehydrogenase 1 gene (Hsd3b1) expression was also downregulated in the prepubertal female cortex. Furthermore, cortisol levels increased, and mRNA expression of the nuclear receptor subfamily 3 group C member 1 gene (Nr3c1) was downregulated in the cortices of both sexes. Unlike the neonatal VPA-exposed models, although a decrease in progestin and estradiol levels was observed in females and males, respectively, no differences were observed in cortisol levels in the cortex tissues of 8-week-old adult rats administered VPA for four weeks. These results indicate that early environmental chemical exposure induces long-term neurosteroid metabolic effects in the brain, with differences according to sex.
Collapse
Affiliation(s)
- Soon-Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Eun-Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
8
|
Sze Y, Fernandes J, Kołodziejczyk ZM, Brunton PJ. Maternal glucocorticoids do not directly mediate the effects of maternal social stress on the fetus. J Endocrinol 2022; 255:143-158. [PMID: 36256689 PMCID: PMC9716396 DOI: 10.1530/joe-22-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Stress during pregnancy negatively affects the fetus and increases the risk for affective disorders in adulthood. Excess maternal glucocorticoids are thought to mediate fetal programming; however, whether they exert their effects directly or indirectly remains unclear. During pregnancy, protective mechanisms including maternal hypothalamic-pituitary-adrenal (HPA) axis hyporesponsiveness and placental 11β-hydroxysteroid dehydrogenase (11βHSD) type 2, which inactivates glucocorticoids, limit mother-to-fetus glucocorticoid transfer. However, whether repeated stress negatively impacts these mechanisms is not known. Pregnant rats were exposed to repeated social stress on gestational days (GD) 16-20 and several aspects of HPA axis and glucocorticoid regulation, including concentrations of glucocorticoids, gene expression for their receptors (Nr3c1, Nr3c2), receptor chaperones (Fkbp51, Fkbp52) and enzymes that control local glucocorticoid availability (Hsd11b1, Hsd11b2), were investigated in the maternal, placental and fetal compartments on GD20. The maternal HPA axis was activated following stress, though the primary driver was vasopressin, rather than corticotropin-releasing hormone. Despite the stress-induced increase in circulating corticosterone in the dams, only a modest increase was detected in the circulation of female fetuses, with no change in the fetal brain of either sex. Moreover, there was no change in the expression of genes that mediate glucocorticoid actions or modulate local concentrations in the fetal brain. In the placenta labyrinth zone, stress increased Hsd11b2 expression only in males and Fkbp51 expression only in females. Our results indicate that any role glucocorticoids play in fetal programming is likely indirect, perhaps through sex-dependent alterations in placental gene expression, rather than exerting effects via direct crossover into the fetal brain.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Joana Fernandes
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | | | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
- Zhejiang University-University of Edinburgh Institute, International Campus, Haining, Zhejiang, P.R. China
- Correspondence should be addressed to P J Brunton:
| |
Collapse
|
9
|
Hamden JE, Gray KM, Salehzadeh M, Soma KK. Isoflurane stress induces region-specific glucocorticoid levels in neonatal mouse brain. J Endocrinol 2022; 255:61-74. [PMID: 35938697 DOI: 10.1530/joe-22-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
The profound programming effects of early life stress (ELS) on brain and behavior are thought to be primarily mediated by adrenal glucocorticoids (GCs). However, in mice, stressors are often administered between postnatal days 2 and 12 (PND2-12), during the stress hyporesponsive period (SHRP), when adrenal GC production is greatly reduced at baseline and in response to stressors. During the SHRP, specific brain regions produce GCs at baseline, but it is unknown if brain GC production increases in response to stressors. We treated mice at PND1 (pre-SHRP), PND5 (SHRP), PND9 (SHRP), and PND13 (post-SHRP) with an acute stressor (isoflurane anesthesia), vehicle control (oxygen), or neither (baseline). We measured a panel of progesterone and six GCs in the blood, hippocampus, cerebral cortex, and hypothalamus via liquid chromatography tandem mass spectrometry. At PND1, baseline corticosterone levels were high and did not increase in response to stress. At PND5, baseline corticosterone levels were very low, increases in brain corticosterone levels were greater than the increase in blood corticosterone levels, and stress had region-specific effects. At PND9, baseline corticosterone levels were low and increased similarly and moderately in response to stress. At PND13, blood corticosterone levels were higher than those at PND9, and corticosterone levels were higher in blood than in brain regions. These data illustrate the rapid and profound changes in stress physiology during neonatal development and suggest that neurosteroid production is a possible mechanism by which ELS has enduring effects on brain and behavior.
Collapse
Affiliation(s)
- Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine M Gray
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Gray SL, Soma KK, Duncan KA. Steroid profiling in brain and plasma of adult zebra finches following traumatic brain injury. J Neuroendocrinol 2022; 34:e13151. [PMID: 35608024 DOI: 10.1111/jne.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
Traumatic brain injury (TBI) is a serious health concern and a leading cause of death. Emerging evidence strongly suggests that steroid hormones (estrogens, androgens, and progesterone) modulate TBI outcomes by regulating inflammation, oxidative stress, free radical production, and extracellular calcium levels. Despite this growing body of evidence on steroid-mediated neuroprotection, very little is known about the local synthesis of these steroids following injury. Here, we examine the effect of TBI on local neurosteroid levels around the site of injury and in plasma in adult male and female zebra finches. Using ultrasensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined estrogens, androgens, and progesterone in the entopallium and plasma of injured and uninjured animals. Three days after injury, elevated levels of 17β-estradiol (E2 ), estrone (E1 ), and testosterone (T) were detected near injured brain tissue with a corresponding increase in E2 also detected in plasma. Taken together, these results provide further evidence that TBI alters neurosteroid levels and are consistent with studies showing that neurosteroids provide neuroprotection following injury.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelli A Duncan
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
11
|
Colldén H, Nilsson ME, Norlén AK, Landin A, Windahl SH, Wu J, Gustafsson KL, Poutanen M, Ryberg H, Vandenput L, Ohlsson C. Comprehensive Sex Steroid Profiling in Multiple Tissues Reveals Novel Insights in Sex Steroid Distribution in Male Mice. Endocrinology 2022; 163:6498862. [PMID: 34999782 PMCID: PMC8807178 DOI: 10.1210/endocr/bqac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/28/2022]
Abstract
A comprehensive atlas of sex steroid distribution in multiple tissues is currently lacking, and how circulating and tissue sex steroid levels correlate remains unknown. Here, we adapted and validated a gas chromatography tandem mass spectrometry method for simultaneous measurement of testosterone (T), dihydrotestosterone (DHT), androstenedione, progesterone (Prog), estradiol, and estrone in mouse tissues. We then mapped the sex steroid pattern in 10 different endocrine, reproductive, and major body compartment tissues and serum of gonadal intact and orchiectomized (ORX) male mice. In gonadal intact males, high levels of DHT were observed in reproductive tissues, but also in white adipose tissue (WAT). A major part of the total body reservoir of androgens (T and DHT) and Prog was found in WAT. Serum levels of androgens and Prog were strongly correlated with corresponding levels in the brain while only modestly correlated with corresponding levels in WAT. After orchiectomy, the levels of the active androgens T and DHT decreased markedly while Prog levels in male reproductive tissues increased slightly. In ORX mice, Prog was by far the most abundant sex steroid, and, again, WAT constituted the major reservoir of Prog in the body. In conclusion, we present a comprehensive atlas of tissue and serum concentrations of sex hormones in male mice, revealing novel insights in sex steroid distribution. Brain sex steroid levels are well reflected by serum levels and WAT constitutes a large reservoir of sex steroids in male mice. In addition, Prog is the most abundant sex hormone in ORX mice.
Collapse
Affiliation(s)
- Hannah Colldén
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Maria E Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg SE-413 45, Sweden
| | - Anna-Karin Norlén
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg SE-413 45, Sweden
| | - Andreas Landin
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Sara H Windahl
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Huddinge,Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Matti Poutanen
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Physiology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku FI-20014,Finland
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg SE-413 45, Sweden
| | - Liesbeth Vandenput
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
- Correspondence: Claes Ohlsson, MD, PhD, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, SE-41345 Göteborg, Sweden.
| |
Collapse
|
12
|
Salehzadeh M, Hamden JE, Li MX, Bajaj H, Wu RS, Soma KK. Glucocorticoid Production in Lymphoid Organs: Acute Effects of Lipopolysaccharide in Neonatal and Adult Mice. Endocrinology 2022; 163:6453468. [PMID: 34864986 DOI: 10.1210/endocr/bqab244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) are critical modulators of the immune system. The hypothalamic-pituitary-adrenal (HPA) axis regulates circulating GC levels and is stimulated by endotoxins. Lymphoid organs also produce GCs; however, it is not known how lymphoid GC levels are regulated in response to endotoxins. We assessed whether an acute challenge of lipopolysaccharide (LPS) increases lymphoid levels of progesterone and GCs, and expression of steroidogenic enzymes and key HPA axis components (eg, corticotropin-releasing hormone [CRH], adrenocorticotropic hormone [ACTH]). We administered LPS (50 µg/kg intraperitoneally) or vehicle control to male and female C57BL/6J neonatal (postnatal day [PND] 5) and adult (PND90) mice and collected blood, bone marrow, thymus, and spleen 4 hours later. We measured progesterone, 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone via liquid chromatography-tandem mass spectrometry. We measured gene expression of key steroidogenic enzymes (Cyp11b1, Hsd11b1, and Hsd11b2) and HPA axis components (Crh, Crhr1, Pomc, and Mc2r) via quantitative polymerase chain reaction. At PND5, LPS induced greater increases in steroid levels in lymphoid organs than in blood. In contrast, at PND90, LPS induced greater increases in steroid levels in blood than in lymphoid organs. Steroidogenic enzyme transcripts were present in all lymphoid organs, and LPS altered steroidogenic enzyme expression predominantly in the spleen. Lastly, we detected transcripts of key HPA axis components in all lymphoid organs, and there was an effect of LPS in the spleen. Taken together, these data suggest that LPS regulates GC production by lymphoid organs, similar to its effects on the adrenal glands, and the effects of LPS might be mediated by local expression of CRH and ACTH.
Collapse
Affiliation(s)
- Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Michael X Li
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Hitasha Bajaj
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Ruolan S Wu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| |
Collapse
|
13
|
Salehzadeh M, Soma KK. Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain Behav Immun Health 2021; 18:100352. [PMID: 34988497 PMCID: PMC8710407 DOI: 10.1016/j.bbih.2021.100352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoids (GCs) regulate a myriad of physiological systems, such as the immune and nervous systems. Systemic GC levels in blood are often measured as an indicator of local GC levels in target organs. However, several extra-adrenal organs can produce and metabolize GCs locally. More sensitive and specific methods for GC analysis (i.e., mass spectrometry) allow measurement of local GC levels in small tissue samples with low GC concentrations. Consequently, is it now apparent that systemic GC levels often do not reflect local GC levels. Here, we review the use of systemic GC measurements in clinical and research settings, discuss instances where systemic GC levels do not reflect local GC levels, and present evidence that local GC levels provide useful insights, with a focus on local GC production in the thymus (immunosteroids) and brain (neurosteroids). Lastly, we suggest key areas for further research, such as the roles of immunosteroids and neurosteroids in neonatal programming and the potential clinical relevance of local GC modulators.
Collapse
Affiliation(s)
- Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Ramírez-Contreras CY, Mehran AE, Salehzadeh M, Mussai EX, Miller JW, Smith A, Ranger M, Holsti L, Soma KK, Devlin AM. Sex-specific effects of neonatal oral sucrose treatment on growth and liver choline and glucocorticoid metabolism in adulthood. Am J Physiol Regul Integr Comp Physiol 2021; 321:R802-R811. [PMID: 34612088 DOI: 10.1152/ajpregu.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
Hospitalized preterm infants experience painful medical procedures. Oral sucrose is the nonpharmacological standard of care for minor procedural pain relief. Infants are treated with numerous doses of sucrose, raising concerns about potential long-term effects. The objective of this study was to determine the long-term effects of neonatal oral sucrose treatment on growth and liver metabolism in a mouse model. Neonatal female and male mice were randomly assigned to one of two oral treatments (n = 7-10 mice/group/sex): sterile water or sucrose. Pups were treated 10 times/day for the first 6 days of life with 0.2 mg/g body wt of respective treatments (24% solution; 1-4 μL/dose) to mimic what is given to preterm infants. Mice were weaned at age 3 wk onto a control diet and fed until age 16 wk. Sucrose-treated female and male mice gained less weight during the treatment period and were smaller at weaning than water-treated mice (P ≤ 0.05); no effect of sucrose treatment on body weight was observed at adulthood. However, adult sucrose-treated female mice had smaller tibias and lower serum insulin-like growth factor-1 than adult water-treated female mice (P ≤ 0.05); these effects were not observed in males. Lower liver S-adenosylmethionine, phosphocholine, and glycerophosphocholine were observed in adult sucrose-treated compared with water-treated female and male mice (P ≤ 0.05). Sucrose-treated female, but not male, mice had lower liver free choline and higher liver betaine compared with water-treated female mice (P < 0.01). Our findings suggest that repeated neonatal sucrose treatment has long-term sex-specific effects on growth and liver methionine and choline metabolism.
Collapse
Affiliation(s)
- Cynthia Y Ramírez-Contreras
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Arya E Mehran
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Melody Salehzadeh
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ei-Xia Mussai
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey
| | - Andre Smith
- Department of Nutritional Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey
| | - Manon Ranger
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Nursing, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa Holsti
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Occupational Science and Occupational Therapy, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela M Devlin
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Tobiansky DJ, Long KM, Hamden JE, Brawn JD, Fuxjager MJ. Cost-reducing traits for agonistic head collisions: a case for neurophysiology. Integr Comp Biol 2021; 61:1394-1405. [PMID: 33885750 DOI: 10.1093/icb/icab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animal species have evolved extreme behaviors requiring them to engage in repeated high-impact collisions. These behaviors include mating displays like headbutting in sheep and drumming in woodpeckers. To our knowledge, these taxa do not experience any notable acute head trauma, even though the deceleration forces would cause traumatic brain injury in most animals. Previous research has focused on skeletomuscular morphology, biomechanics, and material properties in an attempt to explain how animals moderate these high-impact forces. However, many of these behaviors are understudied, and most morphological or computational studies make assumptions about the behavior without accounting for the physiology of an organism. Studying neurophysiological and immune adaptations that co-vary with these behaviors can highlight unique or synergistic solutions to seemingly deleterious behavioral displays. Here, we argue that selection for repeated, high-impact head collisions may rely on a suite of coadaptations in intracranial physiology as a cost-reducing mechanism. We propose that there are three physiological systems that could mitigate the effects of repeated head trauma: (i) the innate neuroimmune response, (ii) the glymphatic system, and (iii) the choroid plexus. These systems are interconnected yet can evolve in an independent manner. We then briefly describe the function of these systems, their role in head trauma, and research that has examined how these systems may evolve to help reduce the cost of repeated, forceful head impacts. Ultimately, we note that little is known about cost-reducing intracranial mechanisms making it a novel field of comparative study that is ripe for exploration.
Collapse
Affiliation(s)
| | - Kira M Long
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAKML
| | | | - Jeffrey D Brawn
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAJDB
| | | |
Collapse
|