1
|
Muttathukunnel P, Wälti M, Aboouf MA, Köster-Hegmann C, Haenggi T, Gassmann M, Pannzanelli P, Fritschy JM, Schneider Gasser EM. Erythropoietin regulates developmental myelination in the brain stimulating postnatal oligodendrocyte maturation. Sci Rep 2023; 13:19522. [PMID: 37945644 PMCID: PMC10636124 DOI: 10.1038/s41598-023-46783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Myelination is a process tightly regulated by a variety of neurotrophic factors. Here, we show-by analyzing two transgenic mouse lines, one overexpressing EPO selectively in the brain Tg21(PDGFB-rhEPO) and another with targeted removal of EPO receptors (EPORs) from oligodendrocyte progenitor cells (OPC)s (Sox10-cre;EpoRfx/fx mice)-a key function for EPO in regulating developmental brain myelination. Overexpression of EPO resulted in faster postnatal brain growth and myelination, an increased number of myelinating oligodendrocytes, faster axonal myelin ensheathment, and improved motor coordination. Conversely, targeted ablation of EPORs from OPCs reduced the number of mature oligodendrocytes and impaired motor coordination during the second postnatal week. Furthermore, we found that EPORs are transiently expressed in the subventricular zone (SVZ) during the second postnatal week and EPO increases the postnatal expression of essential oligodendrocyte pro-differentiation and pro-maturation (Nkx6.2 and Myrf) transcripts, and the Nfatc2/calcineurin pathway. In contrast, ablation of EPORs from OPCs inactivated the Erk1/2 pathway and reduced the postnatal expression of the transcripts. Our results reveal developmental time windows in which EPO therapies could be highly effective for stimulating oligodendrocyte maturation and myelination.
Collapse
Affiliation(s)
- Paola Muttathukunnel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Michael Wälti
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christina Köster-Hegmann
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
| | - Tatjana Haenggi
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Patrizia Pannzanelli
- Rita Levi Montalcini Center for Brain Repair, University of Turin, 10126, Turin, Italy
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol 2023; 11:1221890. [PMID: 37564376 PMCID: PMC10410458 DOI: 10.3389/fcell.2023.1221890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
This article reviews the role of neuronal activity in myelin regeneration and the related neural signaling pathways. The article points out that neuronal activity can stimulate the formation and regeneration of myelin, significantly improve its conduction speed and neural signal processing ability, maintain axonal integrity, and support axonal nutrition. However, myelin damage is common in various clinical diseases such as multiple sclerosis, stroke, dementia, and schizophrenia. Although myelin regeneration exists in these diseases, it is often incomplete and cannot promote functional recovery. Therefore, seeking other ways to improve myelin regeneration in clinical trials in recent years is of great significance. Research has shown that controlling neuronal excitability may become a new intervention method for the clinical treatment of demyelinating diseases. The article discusses the latest research progress of neuronal activity on myelin regeneration, including direct or indirect stimulation methods, and the related neural signaling pathways, including glutamatergic, GABAergic, cholinergic, histaminergic, purinergic and voltage-gated ion channel signaling pathways, revealing that seeking treatment strategies to promote myelin regeneration through precise regulation of neuronal activity has broad prospects.
Collapse
Affiliation(s)
| | - Jing Zhang
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Serrano‐Regal MP, Bayón‐Cordero L, Chara Ventura JC, Ochoa‐Bueno BI, Tepavcevic V, Matute C, Sánchez‐Gómez MV. GABA B receptor agonist baclofen promotes central nervous system remyelination. Glia 2022; 70:2426-2440. [PMID: 35980256 PMCID: PMC9804779 DOI: 10.1002/glia.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
Abstract
Promoting remyelination is considered as a potential neurorepair strategy to prevent/limit the development of permanent neurological disability in patients with multiple sclerosis (MS). To this end, a number of clinical trials are investigating the potential of existing drugs to enhance oligodendrocyte progenitor cell (OPC) differentiation, a process that fails in chronic MS lesions. We previously reported that oligodendroglia express GABAB receptors (GABAB Rs) both in vitro and in vivo, and that GABAB R-mediated signaling enhances OPC differentiation and myelin protein expression in vitro. Our goal here was to evaluate the pro-remyelinating potential of GABAB R agonist baclofen (Bac), a clinically approved drug to treat spasticity in patients with MS. We first demonstrated that Bac increases myelin protein production in lysolecithin (LPC)-treated cerebellar slices. Importantly, Bac administration to adult mice following induction of demyelination by LPC injection in the spinal cord resulted in enhanced OPC differentiation and remyelination. Thus, our results suggest that Bac repurposing should be considered as a potential therapeutic strategy to stimulate remyelination in patients with MS.
Collapse
Affiliation(s)
- Mari Paz Serrano‐Regal
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain,Present address:
Grupo de Neuroinmuno‐ReparaciónHospital Nacional de Parapléjicos‐SESCAMToledoSpain
| | - Laura Bayón‐Cordero
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)LeioaSpain
| | - Juan Carlos Chara Ventura
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)LeioaSpain
| | - Blanca I. Ochoa‐Bueno
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Vanja Tepavcevic
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain
| | - Carlos Matute
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)LeioaSpain
| | - María Victoria Sánchez‐Gómez
- Laboratory of NeurobiologyAchucarro Basque Center for NeuroscienceLeioaSpain,Department of NeurosciencesUniversity of the Basque Country (UPV/EHU)LeioaSpain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)LeioaSpain
| |
Collapse
|
4
|
Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8469756. [PMID: 35663195 PMCID: PMC9159830 DOI: 10.1155/2022/8469756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
Neonatal brain injury is often caused by preterm birth. Brain development is vulnerable to increased environmental stress, including oxidative stress challenges. Due to a premature change of the fetal living environment from low oxygen in utero into postnatal high-oxygen room air conditions ex utero, the immature preterm brain is exposed to a relative hyperoxia, which can induce oxidative stress and impair neuronal cell development. To simulate the drastic increase of oxygen exposure in the immature brain, 5-day-old C57BL/6 mice were exposed to hyperoxia (80% oxygen) for 48 hours or kept in room air (normoxia, 21% oxygen) and mice were analyzed for maturational alterations of cortical GABAergic interneurons. As a result, oxidative stress was indicated by elevated tyrosine nitration of proteins. We found perturbation of perineuronal net formation in line with decreased density of parvalbumin-expressing (PVALB) cortical interneurons in hyperoxic mice. Moreover, maturational deficits of cortical PVALB+ interneurons were obtained by decreased glutamate decarboxylase 67 (GAD67) protein expression in Western blot analysis and lower gamma-aminobutyric acid (GABA) fluorescence intensity in immunostaining. Hyperoxia-induced oxidative stress affected cortical synaptogenesis by decreasing synapsin 1, synapsin 2, and synaptophysin expression. Developmental delay of synaptic marker expression was demonstrated together with decreased PI3K-signaling as a pathway being involved in synaptogenesis. These results elucidate that neonatal oxidative stress caused by increased oxygen exposure can lead to GABAergic interneuron damage which may serve as an explanation for the high incidence of psychiatric and behavioral alterations found in preterm infants.
Collapse
|
5
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|