1
|
Helander A, Andersson A, Villén T. Alternative routine for reporting chiral amphetamine test results in assessment of attention-deficit/hyperactivity disorder medication: experiences from 2013 to 2023. Drug Test Anal 2025; 17:163-169. [PMID: 38600633 PMCID: PMC11729626 DOI: 10.1002/dta.3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
This study evaluated an alternative routine for reporting urinary chiral amphetamine results in assessment of attention-deficit/hyperactivity disorder (ADHD) treatment with amphetamine medications and for detecting side-use of illicit racemic amphetamine. Currently in Sweden, only enantiopure d-amphetamine-based ADHD medications (lisdexamphetamine dimesylate and dexamphetamine sulfate) are approved. It is therefore unsuitable to express the chiral result as the l/d-ratio, as before, because l-amphetamine should not be present provided treatment compliance. A new routine for LC-MS/MS chiral amphetamine testing was therefore introduced in 2020, whereby the relative proportion (%) of l-amphetamine and the total amphetamine and creatinine concentrations are reported. Evaluation of the new routine on 24,354 results from 2013 to 2023 revealed that it was useful to distinguish ADHD medication adherence from illicit drug use as the source for a positive test. The l-amphetamine proportion also reflected the enantiomeric content of the medications used. Overall, most results confirmed adherence to ADHD medication, as the l-amphetamine percentage was <1% in 76% of samples (2023) which is the recommended cutoff with enantiopure d-amphetamine medications. However, in all years, illicit drug use was indicated (>40% l-amphetamine) in 8.3%-14.5% of cases. In conclusion, this study demonstrated the clinical value and utility of a new routine for reporting urinary chiral amphetamine results to differentiate adherence to ADHD medication from illicit drug use. Unlike the l/d-amphetamine ratio, it considers differences in total amphetamine concentration and urine dilution, factors that can affect the interpretation.
Collapse
Affiliation(s)
- Anders Helander
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| | - Annika Andersson
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| | - Tomas Villén
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Bickel J, Szewczyk A, Aboutara N, Jungen H, Müller A, Ondruschka B, Iwersen-Bergmann S. Chiral analysis of amphetamine, methamphetamine, MDMA and MDA enantiomers in human hair samples. J Anal Toxicol 2024; 48:226-234. [PMID: 38613438 DOI: 10.1093/jat/bkae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
A novel analytical method was developed for the simultaneous quantification of the R/S-enantiomers of amphetamine, methamphetamine, MDA and MDMA in hair samples using liquid chromatography-tandem mass spectrometry (LC-MS-MS). This method involved a straightforward derivatization step with dansyl chloride and the use of a chiral column, enabling the separation and quantification of all eight enantiomers in a single analysis. The method exhibited excellent linearity across a concentration range of 0.03-3.00 ng/mg for each enantiomer. Precision and accuracy were within acceptable limits, with bias and relative standard deviation (RSD) values consistently below 6% and 9%, respectively. Selectivity and specificity assessments confirmed the absence of any interference from contaminants or co-extracted drugs. The method demonstrated high sensitivity, with limits of detection (LOD) below 8 pg/mg and limits of quantification (LOQ) below 19 pg/mg for all analytes. Extraction recovery exceeded 79%, and matrix effects were minimal for all analytes. Processed sample stability evaluations revealed consistent results with deviations below 11% for all analytes. Application of the method to 32 authentic human hair samples provided valuable insights into amphetamine use patterns, allowing differentiation between medical amphetamine consumption and illicit use based on enantiomeric composition. Additionally, the method detected co-use of methamphetamine, MDA or MDMA in some samples, highlighting its applicability in drug monitoring and real-life case scenarios within a forensic institute. This innovative analytical approach offers a sensitive and selective method for enantiomeric differentiation of amphetamine, methamphetamine, MDA and MDMA in human hair samples, providing a valuable tool for forensic and clinical investigations.
Collapse
Affiliation(s)
- Julian Bickel
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Anne Szewczyk
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Nadine Aboutara
- Research Centre Borstel Leibniz Lung Centre, Parkallee 1-40, Borstel 23845, Germany
| | - Hilke Jungen
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Alexander Müller
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Benjamin Ondruschka
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Stefanie Iwersen-Bergmann
- Department of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| |
Collapse
|
3
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
4
|
Jacobs CM, Wagmann L, Meyer MR. Sample Matrices for Mass Spectrometry-Based Adherence Monitoring: A Systematic Critical Review. Ther Drug Monit 2024; 46:6-15. [PMID: 37798828 DOI: 10.1097/ftd.0000000000001145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Analytical monitoring of adherence using mass spectrometry (MS) plays an important role in clinical toxicology. Unambiguous detection of drugs (of abuse) and/or their metabolites in body fluids is needed to monitor intake of medication as prescribed or to monitor abstinence as a follow-up to detoxification procedures. This study focused on the advantages and disadvantages of different sample matrices used for MS-based adherence monitoring. METHODS Relevant articles were identified through a literature search in the PubMed database. English articles published between January 01, 2017, and December 31, 2022, were selected using the keywords "adherence assess*" or "adherence monit*" or "compliance assess*" or "compliance monit*" in combination with "mass spectrom*" in the title or abstract. RESULTS A total of 51 articles were identified, 37 of which were within the scope of this study. MS-based monitoring was shown to improve patient adherence to prescribed drugs. However, MS analysis may not be able to assess whether treatment was rigorously followed beyond the last few days before the sampling event, except when hair is the sample matrix. For medication adherence monitoring, blood-based analyses may be preferred because reference plasma concentrations are usually available, whereas for abstinence control, urine and hair samples have the advantage of extended detection windows compared with blood. Alternative sample matrices, such as dried blood samples, oral fluid, and exhaled breath, are suitable for at-home sampling; however, little information is available regarding the pharmacokinetics and reference ranges of drug (of abuse) concentrations. CONCLUSIONS Each sample matrix has strengths and weaknesses, and no single sample matrix can be considered the gold standard for monitoring adherence. It is important to have sufficient information regarding the pharmacokinetics of target substances to select a sample matrix in accordance with the desired purpose.
Collapse
Affiliation(s)
- Cathy M Jacobs
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | | |
Collapse
|
5
|
Quantum chemistry of cocaine and its isomers II: spectroscopy. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Barreiro JC, Tiritan ME, Cass QB. Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Evaluating the reliability of hair analysis in monitoring the compliance of ADHD patients under treatment with Lisdexamphetamine. PLoS One 2021; 16:e0248747. [PMID: 33784320 PMCID: PMC8009440 DOI: 10.1371/journal.pone.0248747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
Considering the high clinical and forensic relevance of pharmaco-adherence during lisdexamphetamine (LDX) treatment for attention-deficit/hyperactivity disorder (ADHD), the aim here was to evaluate hair analysis as a tool for monitoring compliance in patients currently undergoing long term treatment with LDX, by detecting possible interruptions of medication intake or changes in dosage. For this purpose, a total of 24 patients from an outpatient clinic for ADHD were recruited. Hair and urine samples were taken after three consecutive therapy sessions over a 7-month period and analyzed for amphetamine (AMP) enantiomers and other drugs, using chiral and achiral liquid chromatography-tandem mass spectrometry (LC-MS/MS). Participants also provided information on the condition of their hair, the consumption of illegal psychotropic substances and the regularity of taking LDX. Two participants withdrew from the study early. Urine analyses were positive for D-AMP in all urine samples and therapy sessions, except in two patients who did not take LDX on a daily basis. D-AMP was detected in all hair samples; however, no correlation was found between prescribed dose/day and D-AMP concentrations in proximal hair segments. Qualitative interpretation of hair analysis showed that 18 of the 22 study completers were compliant concerning the intake of LDX without additional consumption of illegal D,L-AMP. Analysis of urine taken during the therapy sessions showed no correlation between D-AMP concentrations and prescribed dosage, with or without normalization for creatinine. In conclusion, chiral LC-MS/MS hair analysis might represent a non-invasive way to confirm LDX use within the approximate period covered by the hair segment tested, but it does not allow for quantitative therapeutic drug monitoring because of interindividual variability of concentrations in hair. Drug concentrations in hair at different stages of long-term treatment should thus be interpreted with caution by clinicians and forensic experts alike when making assessments of treatment adherence.
Collapse
|
8
|
TANG W, CHANG J, WANG Y, WANG A, WANG R. [Research progress on chiral separation of amphetamines, ketamine, cathinones]. Se Pu 2021; 39:271-280. [PMID: 34227308 PMCID: PMC9403806 DOI: 10.3724/sp.j.1123.2020.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 11/25/2022] Open
Abstract
Enantiomers are ubiquitous in nature, and they are especially important in the field of pharmaceutical chemistry. Although the enantiomers of chiral drugs have identical chemical structures, they differ notably in their pharmacological, toxicological, pharmacokinetic, metabolic, and other biological activities. The same is true for amphetamines, ketamine, and cathinones, as the chiral separation of these three drugs is representative of drugs. Gas chromatography (GC), high performance liquid chromatography (HPLC), and capillary electrophoresis (CE) are widely used for the chiral separation of these three kinds of drugs. There are some similarities among the three methods for the chiral separation of amphetamines, ketamine, and cathinones: n-trifluoroacetyl-L-prolinyl chloride and (+)R-α-methoxy-α-trifluoromethylphenylacetic acid are the two typical chiral derivatization reagents used in GC. In HPLC, three kinds of chiral stationary phases are used: proteins, polysaccharides, and macrocyclic antibiotics. Cyclodextrin and its derivatives are most commonly used in CE. However, these three methods have inherent shortcomings. In the case of GC, impurities produced during chiral derivatization may interfere with the analysis, and high reaction temperatures affect the efficiency of chiral separation. HPLC has limited application scope and is expensive. In CE, there has no established process to determine the appropriate chiral selector. In recent years, research into application of the chiral separation of the above-mentioned three kinds of drugs has its own characteristics in forensic toxicology. The chiral separation of amphetamine drugs is mostly used to infer the prototype and synthesis route of drugs on the market. The chiral separation of ketamine involves a variety of biological samples. For cathinones, chiral separation methods emphasize their wide applicability. In this review, 66 reports published in professional local and overseas magazines during the past decade are collated. The characteristics of the enantiomers of amphetamines, ketamine, and cathinones as well as the mechanism of chiral recognition are briefly introduced. The commonness of the research and the application of chiral separation in forensic toxicology are reviewed. This paper proposes that the chiral separation of drugs can be further investigated from the following three aspects: 1) the use of computer technology to establish a molecular model for exploring the mechanism of chiral recognition; 2) developing new technologies for chiral separation and carrying out commercial research on the supercritical fluid method; 3) applying chiral separation to judicial practice, pharmaceutical research and development, and other practical fields.
Collapse
|
9
|
Loganathan D, Yi R, Patel B, Zhang J, Kong N. A sensitive HPLC-MS/MS method for the detection, resolution and quantitation of cathinone enantiomers in horse blood plasma and urine. Anal Bioanal Chem 2021; 413:2147-2161. [PMID: 33517480 DOI: 10.1007/s00216-021-03182-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Resolution of cathinone enantiomers in equine anti-doping analysis is becoming more important to distinguish the inadvertent ingestion of plant-based products from those of deliberate administration of designer synthetic analogs. With this in mind, a rapid and sensitive method was developed and validated for the detection, resolution and quantitative determination of cathinone enantiomers in horse blood plasma and urine. The analytes were recovered from the blood plasma and urine matrices by using a liquid-liquid extraction after adjusting the pH to 9. The recovered analytes were derivatized with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide, a chiral derivatizing agent analogous to Marfey's reagent. The resulting diastereoisomers were baseline resolved under a reversed-phase liquid chromatographic condition. Derivatization of the analytes not only allowed the separation of the enantiomers using cost-effective traditional liquid chromatography conditions and reversed-phase columns but also increased the sensitivity, at least to an order of magnitude, when tandem mass spectrometry is used for the detection. A limit of detection of 0.05 ng/mL was achieved for cathinone enantiomers for both matrices. Acceptable intraday and interday precision and accuracy along with satisfactory dilution accuracy and precision were observed during the method validation. The method suitability was tested using the post administration urine samples collected after single doses of cathinone and ephedrine as single-enantiomeric form and methcathinone as racemic form. Finally, a proof of concept of the isomeric ratio in urine samples to distinguish the presence of cathinone as a result of accidental ingestion of plant-based product from that of an illicit use of a designer product is demonstrated. To the best of our knowledge, this is the first such work where cathinone enantiomers were resolved and quantified in horse blood plasma and urine at sub nanogram levels.
Collapse
Affiliation(s)
- Devan Loganathan
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada.
| | - Rong Yi
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Bhavesh Patel
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Julia Zhang
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Noel Kong
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| |
Collapse
|
10
|
Havnen H, Hansen M, Spigset O, Hegstad S. Enantiomeric separation and quantification of R/S‐amphetamine in serum using semi‐automated liquid‐liquid extraction and ultra‐high performance supercritical fluid chromatography‐tandem mass spectrometry. Drug Test Anal 2020; 12:1344-1353. [DOI: 10.1002/dta.2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Hilde Havnen
- Department of Clinical Pharmacology St. Olav University Hospital Trondheim Norway
| | - Miriam Hansen
- Department of Clinical Pharmacology St. Olav University Hospital Trondheim Norway
| | - Olav Spigset
- Department of Clinical Pharmacology St. Olav University Hospital Trondheim Norway
- Department of Clinical and Molecular Medicine Norwegian University of Science and Technology Trondheim Norway
| | - Solfrid Hegstad
- Department of Clinical Pharmacology St. Olav University Hospital Trondheim Norway
| |
Collapse
|
11
|
Tanna S, Ogwu J, Lawson G. Hyphenated mass spectrometry techniques for assessing medication adherence: advantages, challenges, clinical applications and future perspectives. ACTA ACUST UNITED AC 2020; 58:643-663. [DOI: 10.1515/cclm-2019-0820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
AbstractNonadherence to prescribed pharmacotherapy is an understated public health problem globally and is costing many patients their chance to return to good health and healthcare systems billions. Clinicians need an accurate assessment of adherence to medications to aid the clinical decision-making process in the event of poor patient progress and to maximise the patient health outcomes from the drug therapies prescribed. An overview of indirect and direct methods used to measure medication adherence is presented, highlighting the potential for accurate measuring of drugs in biological samples using hyphenated mass spectrometry (MS) techniques to provide healthcare professionals with a reliable evidence base for clinical decision making. In this review we summarise published applications of hyphenated MS techniques for a diverse range of clinical areas demonstrating the rise in the use of such direct methods for assessing medication adherence. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods using plasma, serum and urine samples are the most popular, in recent years increased attention has been given to liquid chromatography high-resolution mass spectrometry (LC-HRMS) methods and alternative biosample matrices including hair, saliva and blood microsamples. The advantages and challenges of using hyphenated MS techniques to address this healthcare problem are also discussed alongside future perspectives.
Collapse
Affiliation(s)
- Sangeeta Tanna
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - John Ogwu
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Graham Lawson
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
12
|
Dhabbah AM. Determination of chiral cathinone in fresh samples of Catha edulis. Forensic Sci Int 2020; 307:110105. [DOI: 10.1016/j.forsciint.2019.110105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
13
|
Steinkamp JM, Goldblatt N, Borodovsky JT, LaVertu A, Kronish IM, Marsch LA, Schuman-Olivier Z. Technological Interventions for Medication Adherence in Adult Mental Health and Substance Use Disorders: A Systematic Review. JMIR Ment Health 2019; 6:e12493. [PMID: 30860493 PMCID: PMC6434404 DOI: 10.2196/12493] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Medication adherence is critical to the effectiveness of psychopharmacologic therapy. Psychiatric disorders present special adherence considerations, notably an altered capacity for decision making and the increased street value of controlled substances. A wide range of interventions designed to improve adherence in mental health and substance use disorders have been studied; recently, many have incorporated information technology (eg, mobile phone apps, electronic pill dispensers, and telehealth). Many intervention components have been studied across different disorders. Furthermore, many interventions incorporate multiple components, making it difficult to evaluate the effect of individual components in isolation. OBJECTIVE The aim of this study was to conduct a systematic scoping review to develop a literature-driven, transdiagnostic taxonomic framework of technology-based medication adherence intervention and measurement components used in mental health and substance use disorders. METHODS This review was conducted based on a published protocol (PROSPERO: CRD42018067902) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic review guidelines. We searched 7 electronic databases: MEDLINE, EMBASE, PsycINFO, the Cochrane Central Register of Controlled Trials, Web of Science, Engineering Village, and ClinicalTrials.gov from January 2000 to September 2018. Overall, 2 reviewers independently conducted title and abstract screens, full-text screens, and data extraction. We included all studies that evaluate populations or individuals with a mental health or substance use disorder and contain at least 1 technology-delivered component (eg, website, mobile phone app, biosensor, or algorithm) designed to improve medication adherence or the measurement thereof. Given the wide variety of studied interventions, populations, and outcomes, we did not conduct a risk of bias assessment or quantitative meta-analysis. We developed a taxonomic framework for intervention classification and applied it to multicomponent interventions across mental health disorders. RESULTS The initial search identified 21,749 results; after screening, 127 included studies remained (Cohen kappa: 0.8, 95% CI 0.72-0.87). Major intervention component categories include reminders, support messages, social support engagement, care team contact capabilities, data feedback, psychoeducation, adherence-based psychotherapy, remote care delivery, secure medication storage, and contingency management. Adherence measurement components include self-reports, remote direct visualization, fully automated computer vision algorithms, biosensors, smart pill bottles, ingestible sensors, pill counts, and utilization measures. Intervention modalities include short messaging service, mobile phone apps, websites, and interactive voice response. We provide graphical representations of intervention component categories and an element-wise breakdown of multicomponent interventions. CONCLUSIONS Many technology-based medication adherence and monitoring interventions have been studied across psychiatric disease contexts. Interventions that are useful in one psychiatric disorder may be useful in other disorders, and further research is necessary to elucidate the specific effects of individual intervention components. Our framework is directly developed from the substance use disorder and mental health treatment literature and allows for transdiagnostic comparisons and an organized conceptual mapping of interventions.
Collapse
Affiliation(s)
| | - Nathaniel Goldblatt
- Outpatient Addiction Services, Department of Psychiatry, Cambridge Health Alliance, Somerville, MA, United States
| | | | - Amy LaVertu
- Tufts University School of Medicine, Boston, MA, United States
| | - Ian M Kronish
- Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, New York City, NY, United States
| | - Lisa A Marsch
- Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Zev Schuman-Olivier
- Outpatient Addiction Services, Department of Psychiatry, Cambridge Health Alliance, Somerville, MA, United States.,Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Jensen CM, Breindahl T. Patients in medical treatment for attention deficit/hyperactivity disorder (ADHD): Are they at risk in drug screening? ACTA ACUST UNITED AC 2018; 11:333-340. [PMID: 30536198 DOI: 10.1007/s12402-018-0282-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
Abstract
The use of medicines to treat attention deficit/hyperactivity disorder (ADHD) has increased worldwide, including the use of amphetamine-based medicines or prodrugs that metabolise to amphetamine in vivo. At the same time, drugs-of-abuse testing by non-specific, point-of-care immunoassay methods ('quick tests') has increased. This article discusses the risk of 'false positive' results or post-analytical misinterpretations of results when immunoassays are used to analyse biological samples from ADHD patients. A rapid evidence review was conducted to identify studies that have focused on the risk of 'false positive' test results in immunoassay testing of patients treated with atomoxetine, bupropion, clonidine, guanfacine, methylphenidate, and modafinil. There is only evidence to suggest that bupropion should cause 'false positive' immunoassay results. However, there is a lack of systematic, updated evaluations and validations of cross-reactivity patterns for immunoassays in the literature. Advanced laboratory methods can distinguish the use of medicines from illicit amphetamine by stereospecific analysis of dextro- and levoamphetamine; however, these analytical services are not commonly available for routine drug testing. The present situation calls for more awareness, proper education and information on these critical ethical issues in drug testing, both for clinicians, other healthcare professionals involved in drug testing and for patients in medical treatment for ADHD. The pitfalls of immunoassays due to cross-reactivity and insufficient specificity/sensitivity can have serious negative consequences for patients safety with regard to incorrect laboratory drug-testing results. Consequently, confirmatory laboratory analysis should always be performed for 'presumptive' positive immunoassay screening results.
Collapse
Affiliation(s)
- Christina Mohr Jensen
- Child and Adolescent Psychiatry, Aalborg University Hospital, Mølleparkvej 10, Aalborg, DK-9000, Denmark
| | - Torben Breindahl
- Department of Clinical Biochemistry, North Denmark Regional Hospital, Bispensgade 37, Hjørring, DK-9800, Denmark.
| |
Collapse
|
15
|
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan ME. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018; 23:E262. [PMID: 29382109 PMCID: PMC6017579 DOI: 10.3390/molecules23020262] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cristiana Santos
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Valter Gonçalves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Ramos
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal.
| | - Carlos Afonso
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|