1
|
Li Z, Li Z, Xu Q, Zhao L, Li B, Liu W, Shi Y. Acoustic ejection tandem mass spectrometry for high-throughput screening of phencyclidine-type substances in urine, including authentic cases. Anal Chim Acta 2024; 1312:342751. [PMID: 38834265 DOI: 10.1016/j.aca.2024.342751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The abuse of the Phencyclidine-type substances, especially ketamine is a serious problem worldwide, and retrospective analysis are important for both the analysis and the identification of forms of drug abuse. The current major analytical methods, while all excellent in terms of accuracy, are time- and reagent-consuming. This depletion is made even more unfortunate by the fact that a large number of samples are negative in retrospective analyses. It is clear that a set of methods that can be analyzed both accurately and quickly need to be developed and applied to the screening and analysis of large quantities of samples. RESULTS We described a urine test based on acoustic ejection mass spectrometry, which allows precise injection at very low volumes and near 1 ejection s-1 and data acquisition. The confidence in identification was increased by the characterization of the abundance ratio of the two pairs of ions. Urine samples could be diluted with water and loaded into a 384-well plate for sampling without complicated sample preparation. The sample in the transparent 384-well plate was pre-scanned by the laser, and then 20 nL droplets were ejected into the ion source for targeted analysis of 2 ion transitions per droplet totaling 9 targeted analytes in the sequence of acquisition methods. It took 90 min to screen 250 samples in this approach, yielding 10 ng mL-1 detection limits. Positive samples were further analyzed by UHPLC-MS/MS for confirmation and quantification of up to 36 analytes. SIGNIFICANCE This was the first fast screening method for phencyclidine-type substances based on acoustic ejection mass spectrometry, which greatly reduces the analytical time, and can accomplish in 1.5 h what UHPLC-MS/MS needs 3 days to complete. And the samples can be analyzed without complicated sample preparation, and also can obtain good detectability. It was applied to a short-term retrospective analysis in Shanghai, and its accuracy was also extremely high.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zehong Li
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qing Xu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Liuqing Zhao
- SCIEX Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Bo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wei Liu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China.
| |
Collapse
|
2
|
Shaw HE, Patel DR, Gannon BM, Fitzgerald LR, Carbonaro TM, Johnson CR, Fantegrossi WE. Phencyclidine-Like Abuse Liability and Psychosis-Like Neurocognitive Effects of Novel Arylcyclohexylamine Drugs of Abuse in Rodents. J Pharmacol Exp Ther 2024; 390:14-28. [PMID: 38272671 PMCID: PMC11192579 DOI: 10.1124/jpet.123.001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.
Collapse
Affiliation(s)
- Hannah E Shaw
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Dylan R Patel
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Theresa M Carbonaro
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Chad R Johnson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| |
Collapse
|
3
|
Xu Y, Lin X, Chen X, Ke X, Wu H, Fan YL, Zhou J, Xu J. Structural confirmation of position isomers 2-(2-methylaminoprolyl)benzofuran and 5-(2-methylaminopropyl)benzofuran: a combined mass spectrometric and computational study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9688. [PMID: 38212651 DOI: 10.1002/rcm.9688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
RATIONALE Phenylethylamines are one of the most common types of new psychoactive substances, following synthetic cannabinoids and synthetic cathinones. They are regulated in many countries because of their strong hallucinogenic effects, which can cause serious nerve damage. There is a wide variety of phenylethylamines, exhibiting rapid renewal and extremely similar structures, therefore accurate qualitative analysis of isomers is a difficult problem in current drug analysis. METHODS The dissociation pathways of the position isomers 2-(2-methylaminoprolyl)benzofuran (2-MAPB) and 5-(2-methylaminopropyl)benzofuran (5-MAPB) were investigated by gas chromatography-mass spectrometry and liquid chromatography coupled to high-resolution quadrupole Orbitrap MS. The dissociation patterns of the phenethylamine-based designer drugs 2-MAPB and 5-MAPB were explored and extended in this work based on MS combined with density functional theory studies. RESULTS For electron ionization mass spectrometry (EI-MS) analysis, the dissociation patterns of 2-MAPB were similar to those of 5-MAPB. For electrospray ionization mass spectrometry (ESI-MSn ) analysis, the hydrogen atom on amino group was facile to form a intramolecular hydrogen bond with the oxygen atom on the parent nucleus of benzofuran in the structure of 2-MAPB, leading to higher abundance of the product ion at m/z 58. However, there was a conjugated system between the positive charge formed by the cleavage of the 5-MAPB side chain and the benzofuran ring, enabling the 5-MAPB to generate a product ion at m/z 131. Computational study showed that energy barrier and spin density difference distribution jointly control the selective dissociation in EI-MS, while different types of orbital interaction induced by intramolecular hydrogen bond led to different dissociation results in ESI-MSn . CONCLUSIONS These different dissociation patterns could be used to distinguish 2-MAPB from 5-MAPB. This could assist forensic laboratories in the differentiation and characterization of potential isomers in these kinds of compounds, especially in mixtures.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotic Laboratory Zhejiang Regional Center, Hangzhou, Zhejiang, P. R. China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xianxin Chen
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotic Laboratory Zhejiang Regional Center, Hangzhou, Zhejiang, P. R. China
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, P. R. China
| | - Hao Wu
- Dian Regional Forensic Science Institute, Hangzhou, Zhejiang, P. R. China
| | - Yi Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, P. R. China
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Jing Zhou
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, P. R. China
| | - Jiawei Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
4
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
5
|
Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int J Mol Sci 2022; 23:ijms232415574. [PMID: 36555217 PMCID: PMC9779550 DOI: 10.3390/ijms232415574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.
Collapse
|
6
|
Mohr ALA, Logan BK, Fogarty MF, Krotulski AJ, Papsun DM, Kacinko SL, Huestis MA, Ropero-Miller JD. Reports of Adverse Events Associated with Use of Novel Psychoactive Substances, 2017-2020: A Review. J Anal Toxicol 2022; 46:e116-e185. [PMID: 35445267 PMCID: PMC9282356 DOI: 10.1093/jat/bkac023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
An important role of modern forensic and clinical toxicologists is to monitor the adverse events of novel psychoactive substances (NPS). Following a prior review from 2013 to 2016, this critical literature review analyzes and evaluates published case reports for NPS from January 2017 through December 2020. The primary objective of this study is to assist in the assessment and interpretation of these cases as well as provide references for confirmation methods. Chemistry, pharmacology, adverse events and user profiles (e.g., polypharmacy) for NPS are provided including case history, clinical symptoms, autopsy findings and analytical results. Literature reviews were performed in PubMed and Google Scholar for publications using search terms such as NPS specific names, general terms (e.g., 'designer drugs' and 'novel psychoactive substances'), drug classes (e.g., 'designer stimulants') and outcome-based terms (e.g., 'overdose' and 'death'). Government and website drug surveillance databases and abstracts published by professional forensic science organizations were also searched. Toxicological data and detailed case information were extracted, tabulated, analyzed and organized by drug category. Case reports included overdose fatalities (378 cases), clinical treatment and hospitalization (771 cases) and driving under the influence of drugs (170 cases) for a total of 1,319 cases providing details of adverse events associated with NPS. Confirmed adverse events with associated toxidromes of more than 60 NPS were reported including synthetic cannabinoid, NPS stimulant, NPS hallucinogen, NPS benzodiazepine and NPS opioid cases. Fifty of these NPS were reported for the first time in January 2017 through December 2020 as compared to the previous 4 years surveyed. This study provides insight and context of case findings described in the literature and in digital government surveillance databases and websites during a recent 4-year period. This review will increase the awareness of adverse events associated with NPS use to better characterize international emerging drug threats.
Collapse
Affiliation(s)
- Amanda L A Mohr
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | - Barry K Logan
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
- NMS Labs, 200 Welsh Rd, Horsham, PA 19044, USA
| | - Melissa F Fogarty
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | - Alex J Krotulski
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
| | | | | | - Marilyn A Huestis
- Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, 2300 Stratford Ave, Willow Grove, PA 19090, USA
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeri D Ropero-Miller
- RTI International, Center for Forensic Sciences, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|