1
|
Dufayet L, Bargel S, Bonnet A, Boukerma AK, Chevallier C, Evrard M, Guillotin S, Loeuillet E, Paradis C, Pouget AM, Reynoard J, Vaucel JA. Gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4BD), and gamma-butyrolactone (GBL) intoxication: A state-of-the-art review. Regul Toxicol Pharmacol 2023; 142:105435. [PMID: 37343712 DOI: 10.1016/j.yrtph.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
γ-hydroxybutyrate (GHB) is synthesized endogenously from γ-aminobutyric acid (GABA) or exogenously from 1,4-butanediol (butane-1,4-diol; 1,4-BD) or γ-butyrolactone (GBL). GBL, and 1,4-BD are rapidly converted to GHB. The gastric absorption time, volume of distribution, and half-life of GHB are between 5 and 45 min, 0.49 ± 0.9 L/kg, and between 20 and 60 min, respectively. GHB and its analogues have a dose-dependent effect on the activation of GHB receptor, GABA-B, and GABA localized to the central nervous system. After ingestion, most patients present transient neurological disorders (lethal dose: 60 mg/kg). Chronic GHB consumption is associated with disorders of use and a withdrawal syndrome when the consumption is discontinued. GHB, GBL, and 1,4-BD are classified as narcotics but only the use of GHB is controlled internationally. They are used for drug facilitated (sexual) assault, recreational purposes, slamsex, and chemsex. To confirm an exogenous intake or administration of GHB, GBL, or 1-4-BD, the pre-analytical conservation is crucial. The antemortem cutoff doses for detection are 5 and 5-15 mg/L, with detection windows of 6 and 10 h in the blood and urine, respectively Control of GHB is essential to limit the number of users, abuse, associated risks, and death related to their consumption.
Collapse
Affiliation(s)
- Laurene Dufayet
- Unité Médico-judiciaire, Hôtel-Dieu, APHP, 75001, Paris, France; Centre Antipoison de Paris - Fédération de Toxicologie (FeTox), Hôpital Fernand-Widal, APHP, 75010, Paris, France; INSERM, UMRS-1144, Faculté de Pharmacie, 75006, Paris, France; UFR de Médecine, Université de Paris, 75010, Paris, France.
| | - Sophie Bargel
- Section Toxicologie - Sécurité Routière, Laboratoire de Police Scientifique de Lille, SNPS, France
| | - Anastasia Bonnet
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | | | - Marion Evrard
- Centre Antipoison de Nancy, CHRU de Nancy, Nancy, France
| | - Sophie Guillotin
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | - Camille Paradis
- Centre Antipoison de Bordeaux CHU de Bordeaux, Bordeaux, France
| | | | - Julien Reynoard
- Pharmacologie Clinique CAP-TV, APHM, Hôpitaux Sud, Marseille, France
| | | |
Collapse
|
2
|
Steuer AE, Bavato F, Schnider LK, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Steuer C, Kraemer T. Urinary concentrations of GHB and its novel amino acid and carnitine conjugates following controlled GHB administration to humans. Sci Rep 2023; 13:8983. [PMID: 37268859 DOI: 10.1038/s41598-023-36213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC-MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c).
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland.
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Laura K Schnider
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, 8093, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Steuer AE, Sutter L, Steuer C, Kraemer T. New gamma-hydroxybutyric acid (GHB) biomarkers: Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of GHB amino acid, carnitine, and fatty acid conjugates in urine. Drug Test Anal 2022; 15:426-443. [PMID: 36562189 DOI: 10.1002/dta.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) represents an important drug in clinical and forensic toxicology, particularly in the context of drug-facilitated crimes. Analytically, GHB remains a major challenge given its endogenous occurrence and short detection window. Previous studies identified a number of potential interesting novel conjugates of GHB with carnitine, amino acids (AA, glutamate, glycine, and taurine), or fatty acids. As a basis for comprehensive studies on the suitability of these novel biomarkers, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in human urine. Additionally, already known markers 2,4-dihydroxy butyric acid (2,4-DHB), 3,4-DHB, glycolic acid, succinic acid, succinylcarnitine, and GHB glucuronide were included. The method was fully validated according to (inter)national guidelines. Synthetic urine proved suitable as a surrogate matrix for calibration. Matrix effects were observed for all analytes with suppression effects of about 50% at QC LOW, and approximately 20% to 40% at QC HIGH, but with consistent standard deviation of <25% at QC LOW and <15% at QC HIGH, respectively. All analytes showed acceptable intra- and inter-day imprecision of below 20%, except for inter-day variation of GHB taurine and FA conjugates at the lowest QC. Preliminary applicability studies proved the usefulness of the method and pointed towards GHB glycine, followed by other AA conjugates as the most promising candidates to improve GHB detection. FA conjugates were not detected in urine samples yet. The method can be used now for comprehensive sample analysis on (controlled) GHB administration to prove the usefulness of the novel GHB biomarkers.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Linda Sutter
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Acide γ-Hydroxybutyrique (GHB), γ-butyrolactone (GBL) et 1,4-butanediol (1,4-BD) : revue de la littérature des aspects pharmacologiques, cliniques, analytiques et médico-légaux. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Li Y, Wang L, Qian M, Qi S, Zhou L, Pu Q. Concise analysis of γ-hydroxybutyric acid in beverages and urine by capillary electrophoresis with capacitively coupled contactless conductivity detection using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid as background electrolyte. J Chromatogr A 2022; 1675:463191. [DOI: 10.1016/j.chroma.2022.463191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
|
6
|
Kim S, Choi S, Lee MS, Kim M, Park M, Han S, Han S, Lee HS, Lee S. Urinary Profile of Endogenous Gamma-Hydroxybutyric Acid and its Biomarker Metabolites in Healthy Korean Females: Determination of Age-Dependent and Intra-Individual Variability and Identification of Metabolites Correlated With Gamma-Hydroxybutyric Acid. Front Pharmacol 2022; 13:853971. [PMID: 35496306 PMCID: PMC9043528 DOI: 10.3389/fphar.2022.853971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Gamma-hydroxybutyric acid (GHB), used as a therapeutic and an illegal anesthetic, is a human neurotransmitter produced during gamma-aminobutyric acid (GABA) biosynthesis and metabolism. Potential biomarker metabolites of GHB intoxication have been identified previously; however, reference concentrations have not been set due to the lack of clinical study data. Urinary profiling of endogenous GHB and its biomarker metabolites in urine samples (n = 472) of 206 healthy females was performed based on differences in age and time of sample collection using liquid chromatography-tandem mass spectrometry following validation studies. The unadjusted and creatinine-adjusted urinary concentrations ranges were obtained after urinary profiling. The creatinine-adjusted concentrations of glutamic and succinic acids and succinylcarnitine significantly increased, whereas that of glycolic acid significantly decreased with advancing age. Significant inter-day variation of GABA concentration and intra-day variation of 3,4-dihydroxybutyric acid and succinylcarnitine concentrations were observed. The urinary concentrations of 2,4-dihydroxybutyric acid, succinic acid, and 3,4-dihydroxybutyric acid showed the highest correlation with that of GHB. Data from this study suggest population reference limits to facilitate clinical and forensic decisions related to GHB intoxication and could be useful for identification of biomarkers following comparison with urinary profiles of GHB-administered populations.
Collapse
Affiliation(s)
- Suji Kim
- Analytical Toxicology Laboratory, College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Suein Choi
- Pharmacometrics Institute for Practical Education and Training, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min Seo Lee
- Drug Metabolism and Bioanalysis Laboratory and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| | - Mingyu Kim
- Analytical Toxicology Laboratory, College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Maria Park
- Pharmacometrics Institute for Practical Education and Training, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sungpil Han
- Pharmacometrics Institute for Practical Education and Training, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seunghoon Han
- Pharmacometrics Institute for Practical Education and Training, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
- *Correspondence: Hye Suk Lee, ; Sooyeun Lee,
| | - Sooyeun Lee
- Analytical Toxicology Laboratory, College of Pharmacy, Keimyung University, Daegu, South Korea
- *Correspondence: Hye Suk Lee, ; Sooyeun Lee,
| |
Collapse
|
7
|
Wang T, Nielsen KL, Frisch K, Lassen JK, Nielsen CB, Andersen CU, Villesen P, Andreasen MF, Hasselstrøm JB, Johannsen M. A Retrospective Metabolomics Analysis of Gamma-Hydroxybutyrate in Humans: New Potential Markers and Changes in Metabolism Related to GHB Consumption. Front Pharmacol 2022; 13:816376. [PMID: 35308203 PMCID: PMC8927817 DOI: 10.3389/fphar.2022.816376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
GHB is an endogenous short-chain organic acid presumably also widely applied as a rape and knock out drug in cases of drug-facilitated crimes or sexual assaults (DFSA). Due to the endogenous nature of GHB and its fast metabolism in vivo, the detection window of exogenous GHB is however narrow, making it challenging to prove use of GHB in DFSA cases. Alternative markers of GHB intake have recently appeared though none has hitherto been validated for forensic use. UHPLC-HRMS based screening of blood samples for drugs of abuse is routinely performed in several forensic laboratories which leaves an enormous amount of unexploited data. Recently we devised a novel metabolomics approach to use archived data from such routine screenings for elucidating both direct metabolites from exogenous compounds, but potentially also regulation of endogenous metabolism and metabolites. In this paper we used UHPLC-HRMS data acquired over a 6-year period from whole blood analysis of 51 drivers driving under the influence of GHB as well as a matched control group. The data were analyzed using a metabolomics approach applying a range of advanced analytical methods such as OPLS-DA, LASSO, random forest, and Pearson correlation to examine the data in depth and demonstrate the feasibility and potential power of the approach. This was done by initially detecting a range of potential biomarkers of GHB consumption, some that previously have been found in controlled GHB studies, as well as several new potential markers not hitherto known. Furthermore, we investigate the impact of GHB intake on human metabolism. In aggregate, we demonstrate the feasibility to extract meaningful information from archived data here exemplified using GHB cases. Hereby we hope to pave the way for more general use of the principle to elucidate human metabolites of e.g. new legal or illegal drugs as well as for applications in more global and large scale metabolomics studies in the future.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
- *Correspondence: Tingting Wang, ; Mogens Johannsen,
| | - Kirstine L. Nielsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Kim Frisch
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Johan K. Lassen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Camilla B. Nielsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Charlotte U. Andersen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Palle Villesen
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette F. Andreasen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Jørgen B. Hasselstrøm
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Section for Forensic Chemistry, Aarhus University, Aarhus, Denmark
- *Correspondence: Tingting Wang, ; Mogens Johannsen,
| |
Collapse
|
8
|
Derivatization-assisted LC-MS/MS method for simultaneous quantification of endogenous gamma-hydroxybutyric acid and its metabolic precursors and products in human urine. Anal Chim Acta 2022; 1194:339401. [DOI: 10.1016/j.aca.2021.339401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
|
9
|
Lamy C, Mansard C, Blondel L, Mercier L, Paci A, Broutin S. Quantification of succinic acid levels, linked to succinate dehydrogenase (SDH) dysfunctions, by an automated and fully validated liquid chromatography tandem mass spectrometry method suitable for multi-matrix applications. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123085. [PMID: 34974318 DOI: 10.1016/j.jchromb.2021.123085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022]
Abstract
The hallmarks of cancer include metabolism with deregulating cellular energetics. Dysfunctions in succinate dehydrogenase (SDH) metabolic enzyme activity, leading to an abnormal accumulation of succinic acid has been described in solid tumors but also in inflammation and ischemia reperfusion injury. Succinic acid is a potential biomarker of SDH related pathologies for diagnostic, evaluation of treatment response and follow-up of the disease. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method allowing a rapid, accurate and precise quantification of succinic acid levels in clinical (serum, urine) and preclinical (cellular pellets, supernatants) samples. 13C4 succinic acid disodium salt was used as internal standard and added to samples before a solid phase extraction (SPE) on Phenomenex STRATATM XL-A (200 mg - 3 mL) 33 µm cartridges. This method is automated by a Freedom EVO® platform from TECAN and succinic acid is separated on a C18 column combined to a Xevo® TQ-S micro Waters mass spectrometer with electrospray ionization (ESI) source. This biomedical analysis allows standard curves to be linear over the range 1.0-135.5 µM with r2 values > 0.999 and low matrix effects (<9.1 %). This method, which is validated according updated European Medicine Agency (EMA) guidelines, is accurate between-run (<11.0 %) and within-run (<7.8 %), precise between-run (<14.4 CV %) and within-run (<3.7 CV %), and is suitable for clinical and preclinical applications.
Collapse
Affiliation(s)
- Constance Lamy
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France
| | - Clémence Mansard
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Louis Blondel
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Lionel Mercier
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France; Service de pharmacocinétique, Faculté de pharmacie, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Sophie Broutin
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France.
| |
Collapse
|
10
|
Kraemer M, Broecker S, Kueting T, Madea B, Maas A. Fatty acid esters as novel metabolites of γ-hydroxybutyric acid: A preliminary investigation. Drug Test Anal 2022; 14:690-700. [PMID: 34983082 DOI: 10.1002/dta.3213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is a substance frequently abused as a knockout agent. Because of possible amnesia experienced by victims of GHB exposure and the short detection time of GHB in biological samples, the proof of GHB uptake is often challenging for forensic toxicologists. For this reason, various approaches have been evaluated to prolong the detection of GHB intake. In the present study, a fatty acid ester of GHB (4-palmitoyloxy butyrate [GHB-Pal; 3-carboxypropyl hexadecanoate]) was synthesized with the intent of examining whether such esters could be detected as metabolites of GHB in blood samples. Using the structurally elucidated synthesis product (structural elucidation by means of high performance liquid chromatography quadrupole time of flight mass spectrometry [LC-QToF-MS]), an LC triple quadrupole mass spectrometric (LC-MS/MS) method was established for the detection of GHB-Pal. Blood (plasma) samples from four cases in which GHB was previously detected at relevant concentrations (56.1-96.5 μg/ml) were analyzed with respect to GHB-Pal. Signals for GHB-Pal, as well as possible signals for other fatty acid esters of GHB, were detectable in these specimens. (Negative) control samples (20 plasma samples and 20 red blood cell/blood clot samples; from cases in which an intake of GHB or its precursors was not assumed) were all negative for GHB-Pal. To evaluate a possible forensic benefit of GHB fatty acid esters (prolongation of the detection window of a GHB uptake), the analysis of additional plasma samples collected after GHB uptake (or controlled GHB administration) and quantification of GHB fatty acid esters are needed.
Collapse
Affiliation(s)
- Michael Kraemer
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| | | | - Theresa Kueting
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany.,Institute of Forensic Medicine, University Hospital Essen, Forensic Toxicology, Essen, Germany
| | - Burkhard Madea
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| | - Alexandra Maas
- Institute of Forensic Medicine, University Hospital Bonn, Forensic Toxicology, Bonn, Germany
| |
Collapse
|
11
|
Jarsiah P, Roehrich J, Kueting T, Martz W, Hess C. GHB related acids are useful in routine casework of suspected GHB intoxication cases. Forensic Sci Int 2021; 324:110833. [PMID: 34020075 DOI: 10.1016/j.forsciint.2021.110833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
GHB related acids (3,4-dihydroxy butyric acid, 2,4-dihydroxy butyric acid and glycolic acid) are produced through oxidative GHB metabolism. These analytes could be potential biomarkers to ensure the diagnosis of a GHB intoxication and even prolong the detection window. Within this study, forensic routine cases were measured to consider the potential of additional gas chromatographic mass spectrometric analysis on these acids. 17 GHB positive real cases (10 serum samples and 7 urine samples) and 40 cases with suspicion of drugging in DFC cases and negative GHB results (21 serum samples and 19 urine samples) were evaluated. Increased GHB related acid concentrations were detected in all serum and most urine samples positive on GHB. In some GHB negative cases, especially in serum samples, concentrations of GHB related acids gave hints that GHB actually was taken. We recommend to use the following cut-offs for a more reliable interpretation of potential GHB intoxication cases: 3,4-OH-BA:>3 mg/L in serum and>50 mg/L in urine; 2,4-OH-BA:>2 mg/L in serum and>25 mg/L in urine; GA:>5 mg/L in serum and>400 mg/L in urine.
Collapse
Affiliation(s)
- Pouria Jarsiah
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany; Special Laboratory, Medical Care Centers Dr. Eberhard & Partner, Dortmund, Germany
| | - Joerg Roehrich
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Theresa Kueting
- Institute of Forensic Medicine, Forensic Toxicology, University of Bonn, Germany
| | - Walter Martz
- Institute of Forensic Medicine, Forensic Toxicology, University of Gießen, Gießen, Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Küting T, Schneider B, Heidbreder A, Krämer M, Jarsiah P, Madea B, Hess C. Detection of γ-hydroxybutyric acid-related acids in blood plasma and urine: Extending the detection window of an exogenous γ-hydroxybutyric acid intake? Drug Test Anal 2021; 13:1635-1649. [PMID: 33991073 DOI: 10.1002/dta.3097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022]
Abstract
In crimes facilitated by γ-hydroxybutyric acid (GHB) administration, the frequent occurrence of anterograde amnesia of the victims as well as the short detection window and variations of endogenous GHB concentrations complicate obtaining analytical proof of GHB administration. Because elevated endogenous organic acid concentrations have been found in the urine of patients with succinic semialdehyde deficiency (leading to accumulation of GHB in human specimens) and after GHB ingestion, we searched for an alternative way to prove GHB administration via detection of elevated organic acid concentrations in blood plasma and urine. We collected blood and urine samples from narcolepsy patients (n = 5) treated with pharmaceuticals containing GHB sodium salt (1.86-3.72 g GHB as free acid per dose). Although GHB was detectable only up to 4 h in concentrations greater than the commonly used cutoff levels in blood plasma, 3,4-dihydroxybutyric acid (3,4-DHB) could be detected up to 12 h in blood plasma in concentrations exceeding initial concentrations of the same patient before GHB ingestion. Furthermore, four of the five patients showed an increase above endogenous levels described in the scientific literature. In urine, GHB concentrations above commonly used cutoff levels could be observed 4.5-9.5 h after GHB intake. Creatinine standardized initial concentrations were reached again for glycolic acid (GA), 3,4-DHB, and 2,4-dihydroxybutyric (2,4-DHB) acid at 6.5-22, 11.5-22, and 8.5-70 h after GHB intake, respectively. Therefore, 2,4-DHB, 3,4-DHB, and GA are promising and should be further investigated as potential biomarkers to prolong the detection window of GHB intake.
Collapse
Affiliation(s)
- Theresa Küting
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany
| | - Bianca Schneider
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany
| | - Anna Heidbreder
- Medical University Innsbruck, University Hospital for Neurology, Innsbruck, Austria
| | - Michael Krämer
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany
| | - Pouria Jarsiah
- Institute of Forensic Medicine, University of Mainz, Mainz, Germany.,Special Laboratory, Medical Care Centers, Dr. Eberhard & Partner, Dortmund, Germany
| | - Burkhard Madea
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany.,Institute of Forensic Medicine, University of Mainz, Mainz, Germany
| |
Collapse
|
13
|
Steuer AE, Raeber J, Simbuerger F, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Towards Extending the Detection Window of Gamma-Hydroxybutyric Acid-An Untargeted Metabolomics Study in Serum and Urine Following Controlled Administration in Healthy Men. Metabolites 2021; 11:metabo11030166. [PMID: 33809281 PMCID: PMC7998200 DOI: 10.3390/metabo11030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Correspondence: ; Tel.: +41-(0)4-4635-5679
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Fabio Simbuerger
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| |
Collapse
|
14
|
Jarsiah P, Kueting T, Roehrich J, Germerott T, Remane D, Toennes SW, Scholtis S, Krumbiegel F, Hess C. GHB related acids (dihydroxy butyric acids, glycolic acid) can help in the interpretation of post mortem GHB results. Forensic Sci Int 2020; 316:110536. [DOI: 10.1016/j.forsciint.2020.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
|