1
|
Kollárovič G, Topping CE, Shaw EP, Chambers AL. The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res 2020; 48:1872-1885. [PMID: 31802118 PMCID: PMC7038987 DOI: 10.1093/nar/gkz1146] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Efficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes facilitate different DNA repair pathways, during different stages of the cell cycle and in varied chromatin environments. The contribution of remodelling factors to double-strand break repair within heterochromatin during G2 is unclear. The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We discover that HELLS facilitates homologous recombination at two-ended breaks and contributes to repair within heterochromatic regions during G2. HELLS promotes initiation of HR by facilitating end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.
Collapse
Affiliation(s)
- Gabriel Kollárovič
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Caitríona E Topping
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Shaw
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Anna L Chambers
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Robinson MH, Maximov V, Lallani S, Farooq H, Taylor MD, Read RD, Kenney AM. Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. Sci Rep 2019; 9:13611. [PMID: 31541170 PMCID: PMC6754407 DOI: 10.1038/s41598-019-50088-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Medulloblastoma is a malignant pediatric tumor that arises from neural progenitors in the cerebellum. Despite a five-year survival rate of ~70%, nearly all patients incur adverse side effects from current treatment strategies that drastically impact quality of life. Roughly one-third of medulloblastoma are driven by aberrant activation of the Sonic Hedgehog (SHH) signaling pathway. However, the scarcity of genetic mutations in medulloblastoma has led to investigation of other mechanisms contributing to cancer pathogenicity including epigenetic regulation of gene expression. Here, we show that Helicase, Lymphoid Specific (HELLS), a chromatin remodeler with epigenetic functions including DNA methylation and histone modification, is induced by Sonic Hedgehog (SHH) in SHH-dependent cerebellar progenitor cells and the developing murine cerebella. HELLS is also up-regulated in mouse and human SHH medulloblastoma. Others have shown that HELLS activity generally results in a repressive chromatin state. Our results demonstrate that increased expression of HELLS in our experimental systems is regulated by the oncogenic transcriptional regulator YAP1 downstream of Smoothened, the positive transducer of SHH signaling. Elucidation of HELLS as one of the downstream effectors of the SHH pathway may lead to novel targets for precision therapeutics with the promise of better outcomes for SHH medulloblastoma patients.
Collapse
Affiliation(s)
- M Hope Robinson
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA
- Cancer Biology Graduate Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Victor Maximov
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Shoeb Lallani
- Department of Pharmacology, Emory University, Atlanta, GA, 30322, USA
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Renee D Read
- Department of Pharmacology, Emory University, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatric Oncology, Emory University, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Basenko EY, Kamei M, Ji L, Schmitz RJ, Lewis ZA. The LSH/DDM1 Homolog MUS-30 Is Required for Genome Stability, but Not for DNA Methylation in Neurospora crassa. PLoS Genet 2016; 12:e1005790. [PMID: 26771905 PMCID: PMC4714748 DOI: 10.1371/journal.pgen.1005790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes.
Collapse
Affiliation(s)
- Evelina Y. Basenko
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Lungu C, Muegge K, Jeltsch A, Jurkowska RZ. An ATPase-deficient variant of the SNF2 family member HELLS shows altered dynamics at pericentromeric heterochromatin. J Mol Biol 2015; 427:1903-15. [PMID: 25823553 PMCID: PMC7722765 DOI: 10.1016/j.jmb.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/04/2015] [Accepted: 03/20/2015] [Indexed: 11/15/2022]
Abstract
The HELLS (helicase, lymphoid specific, also known as lymphoid-specific helicase) protein is related to the SNF2 (sucrose non-fermentable 2) family of chromatin remodeling ATPases. It is required for efficient DNA methylation in mammals, particularly at heterochromatin-located repetitive sequences. In this study, we investigated the interaction of HELLS with chromatin and used an ATPase-deficient HELLS variant to address the role of ATP hydrolysis in this process. Chromatin fractionation experiments demonstrated that, in the absence of the ATPase activity, HELLS is retained at the nuclear matrix compartment, defined in part by lamin B1. Microscopy studies revealed a stronger association of the ATPase-deficient mutant with heterochromatin. These results were further supported by fluorescence recovery after photobleaching measurements, which showed that, at heterochromatic sites, wild-type HELLS is very dynamic, with a recovery half-time of 0.8s and a mobile protein fraction of 61%. In contrast, the ATPase-deficient mutant displayed 4.5-s recovery half-time and a reduction in the mobile fraction to 30%. We also present evidence suggesting that, in addition to the ATPase activity, a functional H3K9me3 signaling pathway contributes to an efficient release of HELLS from pericentromeric chromatin. Overall, our results show that a functional ATPase activity is not required for the recruitment of HELLS to heterochromatin, but it is important for the release of the enzyme from these sites.
Collapse
Affiliation(s)
- Cristiana Lungu
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Basic Science Program, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, MD 21702, USA
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
5
|
The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J 2011; 31:972-85. [PMID: 22157815 DOI: 10.1038/emboj.2011.451] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/21/2011] [Indexed: 11/09/2022] Open
Abstract
The activating E2F-transcription factors are best known for their dependence on the Retinoblastoma protein and their role in cellular proliferation. E2F3 is uniquely amplified in specific human tumours where its expression is inversely correlated with the survival of patients. Here, E2F3B interaction partners were identified by mass spectrometric analysis. We show that the SNF2-like helicase HELLS interacts with E2F3A in vivo and cooperates with its oncogenic functions. Depletion of HELLS severely perturbs the induction of E2F-target genes, hinders cell-cycle re-entry and growth. Using chromatin immmunoprecipitation coupled to sequencing, we identified genome-wide targets of HELLS and E2F3A/B. HELLS binds promoters of active genes, including the trithorax-related MLL1, and co-regulates E2F3-dependent genes. Strikingly, just as E2F3, HELLS is overexpressed in human tumours including prostate cancer, indicating that either factor may contribute to the malignant progression of tumours. Our work reveals that HELLS is important for E2F3 in tumour cell proliferation.
Collapse
|
6
|
The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1. EMBO Rep 2011; 12:574-80. [PMID: 21525954 DOI: 10.1038/embor.2011.74] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 11/08/2022] Open
Abstract
Mutations in HepA-related protein (HARP, or SMARCAL1) cause Schimke immunoosseous dysplasia (SIOD). HARP has ATP-dependent annealing helicase activity, which helps to stabilize stalled replication forks and facilitate DNA repair during replication. Here, we show that the conserved tandem HARP (2HP) domain dictates this annealing helicase activity. Furthermore, chimeric proteins generated by fusing the 2HP domain of HARP with the SNF2 domain of BRG1 or HELLS show annealing helicase activity in vitro and, when targeted to replication forks, mimic the functions of HARP in vivo. We propose that the HARP domain endows HARP with this ATP-driven annealing helicase activity.
Collapse
|
7
|
Niu J, Chen T, Han L, Wang P, Li N, Tong T. Transcriptional activation of the senescence regulator Lsh by E2F1. Mech Ageing Dev 2011; 132:180-6. [PMID: 21453717 DOI: 10.1016/j.mad.2011.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 02/28/2011] [Accepted: 03/11/2011] [Indexed: 12/22/2022]
Abstract
Lsh, a protein related to the SNF2 family of chromatin-remodeling ATPases, is a major epigenetic regulator that is essential for DNA methylation and histone acetylation at repetitive elements. Lsh represses endogenous p16(INK4a) expression by recruiting HDAC to the p16(INK4a) promoter, which in turn delays cell senescence. However, the molecular mechanisms that govern loss of Lsh expression during cellular senescence have yet to be elucidated. Here we investigate the transcriptional regulation of the human Lsh promoter. We find that the minimal Lsh promoter is located between positions -216 and -119 relative to the transcription start site, and contains two putative E2F binding sites. Ectopic E2F1 increases expression of Lsh at both transcriptional and translational levels. E2F1 physically interacts with the Lsh promoter by binding to each of the two putative binding sites and transactivates the Lsh promoter. E2F1 also induces Lsh protein expression and transactivates the Lsh promoter in 2BS cells. At the same time, E2F1-induced Lsh promoter activity is reduced in senescent cells compared to young cells. These results indicate that E2F1 plays a crucial role in transcriptional control of the human Lsh gene and the decrease of Lsh expression in senescent cells is related to the repression of E2F1.
Collapse
Affiliation(s)
- Jing Niu
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
8
|
de Peppo GM, Svensson S, Lennerås M, Synnergren J, Stenberg J, Strehl R, Hyllner J, Thomsen P, Karlsson C. Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications. Tissue Eng Part A 2010; 16:2161-82. [PMID: 20136402 DOI: 10.1089/ten.tea.2009.0629] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adult stem cells, such as human mesenchymal stem cells (hMSCs), show limited proliferative capacity and, after long-term culture, lose their differentiation capacity and are therefore not an optimal cell source for tissue engineering. Human embryonic stem cells (hESCs) constitute an important new resource in this field, but one major drawback is the risk of tumor formation in the recipients. One alternative is to use progenitor cells derived from hESCs that are more lineage restricted but do not form teratomas. We have recently derived a cell line from hESCs denoted hESC-derived mesodermal progenitors (hES-MPs), and here, using genome-wide microarray analysis, we report that the process of hES-MPs derivation results in a significantly altered expression of hESC characteristic genes to an expression level highly similar to that of hMSCs. However, hES-MPs displayed a significantly higher proliferative capacity and longer telomeres. The hES-MPs also displayed lower expression of HLA class II proteins before and after interferon-gamma treatment, indicating that these cells may somewhat be immunoprivileged and potentially used for HLA-incompatible transplantation. The hES-MPs are thus an appealing alternative to hMSCs in tissue engineering applications and stem-cell-based therapies for mesodermal tissues.
Collapse
Affiliation(s)
- Giuseppe Maria de Peppo
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
10
|
Waseem A, Ali M, Odell EW, Fortune F, Teh MT. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncol 2010; 46:536-42. [PMID: 20400365 DOI: 10.1016/j.oraloncology.2010.03.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 12/17/2022]
Abstract
We recently showed that upregulation of a key oncogene FOXM1 precedes head and neck squamous cell carcinoma (HNSCC) malignancy. Furthermore, we also identified a centrosomal protein CEP55 and a DNA helicase/putative stem cell marker HELLS, which are both downstream targets of FOXM1. In this study, we have investigated the expression profiles of CEP55 and HELLS using immunohistochemistry and quantified by digital densitometry in a tissue panel (20 samples) consisting of normal oral mucosa, dysplasias, HNSCC and lymph node metastasis (LnMet) samples. Furthermore, we corroborated our findings using absolute real-time PCR (qPCR) on a panel of 12 primary normal human oral keratinocytes, five dysplasia and 10 HNSCC cell lines. Finally, we validated our study using bioinformatics microarray analysis on an independent HNSCC patient cohort (four normal and 16 tumours). In normal oral mucosa, CEP55 protein was detected at very low level within the upper differentiated layers. In contrast, CEP55 was highly expressed in oral dysplasia whereas only moderate expression was detected in HNSCC and LnMet. Low level of HELLS expression was detected in the basal cell layer of the normal oral mucosa, moderate level was seen in dysplasia and high levels in both HNSCC and LnMet. These expression patterns were consistent with both qPCR data from the cell line panel and microarray data analysis of TNM-stage defined HNSCC samples confirming the progressive expression pattern of CEP55 and HELLS. To our knowledge, this is the first pilot study demonstrating that both CEP55 and HELLS mRNA and protein expression positively correlate with pre-malignancy and HNSCC progression. This study provides strong evidence that CEP55 and HELLS may be used in conjunction with FOXM1 as a biomarker set for early cancer detection and indicators of malignant conversion and progression.
Collapse
Affiliation(s)
- Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, England, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Zhou R, Han L, Li G, Tong T. Senescence delay and repression of p16INK4a by Lsh via recruitment of histone deacetylases in human diploid fibroblasts. Nucleic Acids Res 2009; 37:5183-96. [PMID: 19561196 PMCID: PMC2731912 DOI: 10.1093/nar/gkp533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lymphoid specific helicase (Lsh) belongs to the family of SNF2/helicases. Disruption of Lsh leads to developmental growth retardation and premature aging in mice. However, the specific effect of Lsh on human cellular senescence remains unknown. Herein, we report that Lsh overexpression delays cell senescence by silencing p16INK4a in human fibroblasts. The patterns of p16INK4a and Lsh expression during cell senescence present the inverse correlation. We also find that Lsh requires histone deacetylase (HDAC) activity to repress p16INK4a and treatment with trichostatin A (TSA) is sufficient to block the repressor effect of Lsh. Moreover, overexpression of Lsh is correlated with deacetylation of histone H3 at the p16 promoter, and TSA treatment in Lsh-expressing cells reverses the acetylation status of histones. Additionally, we demonstrate an interaction between Lsh, histone deacetylase 1 (HDAC1) and HDAC2 in vivo. Furthermore, we demonstrate that Lsh interacts in vivo with the p16 promoter and recruits HDAC1. Our data suggest that Lsh represses endogenous p16INK4a expression by recruiting HDAC to establish a repressive chromatin structure at the p16INK4a promoter, which in turn delays cell senescence.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Research Center on Aging, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Hale CJ, Stonaker JL, Gross SM, Hollick JB. A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize. PLoS Biol 2008; 5:e275. [PMID: 17941719 PMCID: PMC2020503 DOI: 10.1371/journal.pbio.0050275] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 08/20/2007] [Indexed: 11/18/2022] Open
Abstract
Paramutations represent heritable epigenetic alterations that cause departures from Mendelian inheritance. While the mechanism responsible is largely unknown, recent results in both mouse and maize suggest paramutations are correlated with RNA molecules capable of affecting changes in gene expression patterns. In maize, multiple required to maintain repression (rmr) loci stabilize these paramutant states. Here we show rmr1 encodes a novel Snf2 protein that affects both small RNA accumulation and cytosine methylation of a proximal transposon fragment at the Pl1-Rhoades allele. However, these cytosine methylation differences do not define the various epigenetic states associated with paramutations. Pedigree analyses also show RMR1 does not mediate the allelic interactions that typically establish paramutations. Strikingly, our mutant analyses show that Pl1-Rhoades RNA transcript levels are altered independently of transcription rates, implicating a post-transcriptional level of RMR1 action. These results suggest the RNA component of maize paramutation maintains small heterochromatic-like domains that can affect, via the activity of a Snf2 protein, the stability of nascent transcripts from adjacent genes by way of a cotranscriptional repression process. These findings highlight a mechanism by which alleles of endogenous loci can acquire novel expression patterns that are meiotically transmissible.
Collapse
Affiliation(s)
- Christopher J Hale
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jennifer L Stonaker
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Stephen M Gross
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jay B Hollick
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Myant K, Stancheva I. LSH cooperates with DNA methyltransferases to repress transcription. Mol Cell Biol 2008; 28:215-26. [PMID: 17967891 PMCID: PMC2223296 DOI: 10.1128/mcb.01073-07] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 08/16/2007] [Accepted: 10/11/2007] [Indexed: 12/20/2022] Open
Abstract
LSH, a protein related to the SNF2 family of chromatin-remodeling ATPases, is required for efficient DNA methylation in mammals. How LSH functions to support DNA methylation and whether it associates with a large protein complex containing DNA methyltransferase (DNMT) enzymes is currently unclear. Here we show that, unlike many other chromatin-remodeling ATPases, native LSH is present mostly as a monomeric protein in nuclear extracts of mammalian cells and cannot be detected in a large multisubunit complex. However, when targeted to a promoter of a reporter gene, LSH acts as an efficient transcriptional repressor. Using this as an assay to identify proteins that are required for LSH-mediated repression we found that LSH cooperates with the DNMTs DNMT1 and DNMT3B and with the histone deacetylases (HDACs) HDAC1 and HDAC2 to silence transcription. We show that transcriptional repression by LSH and interactions with HDACs are lost in DNMT1 and DNMT3B knockout cells but that the enzymatic activities of DNMTs are not required for LSH-mediated silencing. Our data suggest that LSH serves as a recruiting factor for DNMTs and HDACs to establish transcriptionally repressive chromatin which is perhaps further stabilized by DNA methylation at targeted loci.
Collapse
Affiliation(s)
- Kevin Myant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
14
|
Gaube F, Wolfl S, Pusch L, Kroll TC, Hamburger M. Gene expression profiling reveals effects of Cimicifuga racemosa (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7. BMC Pharmacol 2007; 7:11. [PMID: 17880733 PMCID: PMC2194763 DOI: 10.1186/1471-2210-7-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 09/20/2007] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Extracts from the rhizome of Cimicifuga racemosa (black cohosh) are increasingly popular as herbal alternative to hormone replacement therapy (HRT) for the alleviation of postmenopausal disorders. However, the molecular mode of action and the active principles are presently not clear. Previously published data have been largely contradictory. We, therefore, investigated the effects of a lipophilic black cohosh rhizome extract and cycloartane-type triterpenoids on the estrogen receptor positive human breast cancer cell line MCF-7. RESULTS Both extract and purified compounds clearly inhibited cellular proliferation. Gene expression profiling with the extract allowed us to identify 431 regulated genes with high significance. The extract induced expression pattern differed from those of 17beta-estradiol or the estrogen receptor antagonist tamoxifen. We observed a significant enrichment of genes in an anti-proliferative and apoptosis-sensitizing manner, as well as an increase of mRNAs coding for gene products involved in several stress response pathways. These functional groups were highly overrepresented among all regulated genes. Also several transcripts coding for oxidoreductases were induced, as for example the cytochrome P450 family members 1A1 and 1B1. In addition, some transcripts associated with antitumor but also tumor-promoting activity were regulated. Real-Time RT-PCR analysis of 13 selected genes was conducted after treatment with purified compounds - the cycloartane-type triterpene glycoside actein and triterpene aglycons - showing similar expression levels compared to the extract. CONCLUSION No estrogenic but antiproliferative and proapoptotic gene expression was shown for black cohosh in MCF-7 cells at the transcriptional level. The effects may be results of the activation of different pathways. The cycloartane glycosides and - for the first time - their aglycons could be identified as an active principle in black cohosh.
Collapse
Affiliation(s)
- Friedemann Gaube
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstr. 10, 07743 Jena, Germany
| | - Stefan Wolfl
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimerfeld 364, 69120 Heidelberg, Germany
| | - Larissa Pusch
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Torsten C Kroll
- Clinic of Internal Medicine II, University of Jena, Erlanger Allee 101, 07747 Jena, Germany
| | - Matthias Hamburger
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Jena, Semmelweisstr. 10, 07743 Jena, Germany
- Department of Pharmaceutical Sciences, Institute of Pharmaceutical Biology, University of Basel, Klingelbergstr. 50, CH-4053 Basel, Switzerland
| |
Collapse
|
15
|
Sun LQ, Lee DW, Zhang Q, Xiao W, Raabe EH, Meeker A, Miao D, Huso DL, Arceci RJ. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev 2004; 18:1035-46. [PMID: 15105378 PMCID: PMC406293 DOI: 10.1101/gad.1176104] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/22/2004] [Indexed: 12/21/2022]
Abstract
Imperfect maintenance of genome integrity has been postulated to be an important cause of aging. Here we provide support for this hypothesis by demonstrating that the disruption of PASG (lsh), a SNF2-like factor that facilitates DNA methylation, causes global hypomethylation, developmental growth retardation and a premature aging phenotype. PASG mutant mice display signs of growth retardation and premature aging, including low birth weight, failure to thrive, graying and loss of hair, reduced skin fat deposition, osteoporosis, kyphosis, cachexia, and premature death. Fibroblasts derived from PASG mutant embryos show a replicative senescence phenotype. Both PASG mutant mice and fibroblasts demonstrate a markedly increased expression of senescence-associated tumor suppressor genes, such as p16(INK4a), that is independent of promoter methylation, but, instead, is associated with down-regulation of bmi-1, a negative regulator of p16(INK4a). These studies show that PASG is essential for properly maintaining DNA methylation and gene expression patterns that are required for normal growth and longevity. PASG mutant mice provide a useful model for the study of aging as well as the mechanisms regulating epigenetic patterning during development and postnatal life.
Collapse
Affiliation(s)
- Lin-Quan Sun
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation?how does it all fit together? J Cell Biochem 2002; 87:117-25. [PMID: 12244565 DOI: 10.1002/jcb.10286] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation is important in the control of gene transcription and chromatin structure. The complexities of this process are just beginning to be elucidated in relationship to other epigenetic mechanisms. Exciting new research in the areas of histone methylation and chromatin remodeling make it clear just how important the connections between these various mechanisms and DNA methylation are for the control of chromosome structure and gene expression. Emerging evidence suggests that chromatin remodeling enzymes and histone methylation are essential for proper DNA methylation patterns. Other histone modifications, such as acetylation and phosphorylation, in turn, affect histone methylation and histone methylation also appears to be highly reliant on chromatin remodeling enzymes. This review will summarize what is likely only the beginning of a flood of new information that will ultimately link all epigenetic modifications of the mammalian genome. A model will also be put forth to account for how chromatin modifications lead to genomic DNA methylation patterns.
Collapse
Affiliation(s)
- Theresa M Geiman
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
18
|
Meehan RR, Pennings S, Stancheva I. Lashings of DNA methylation, forkfuls of chromatin remodeling. Genes Dev 2001; 15:3231-6. [PMID: 11751628 DOI: 10.1101/gad.954901] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R R Meehan
- Genes and Development Group, Department of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK.
| | | | | |
Collapse
|