1
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
2
|
Beccari L, Jaquier G, Lopez-Delisle L, Rodriguez-Carballo E, Mascrez B, Gitto S, Woltering J, Duboule D. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev Dyn 2021; 250:1280-1299. [PMID: 33497014 PMCID: PMC8451760 DOI: 10.1002/dvdy.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon1, Lyon, France
| | - Gabriel Jaquier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Joost Woltering
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Federal School of Technology (EPFL), Lausanne, Switzerland.,Collège de France, Paris, France
| |
Collapse
|
3
|
Richard D, Liu Z, Cao J, Kiapour AM, Willen J, Yarlagadda S, Jagoda E, Kolachalama VB, Sieker JT, Chang GH, Muthuirulan P, Young M, Masson A, Konrad J, Hosseinzadeh S, Maridas DE, Rosen V, Krawetz R, Roach N, Capellini TD. Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk. Cell 2020; 181:362-381.e28. [PMID: 32220312 PMCID: PMC7179902 DOI: 10.1016/j.cell.2020.02.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.
Collapse
Affiliation(s)
- Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zun Liu
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jiaxue Cao
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ata M Kiapour
- Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Willen
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Evelyn Jagoda
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University School of Medicine, Boston, MA 02115, USA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02115, USA; Hariri Institute for Computing and Computational Science and Engineering, Boston University, Boston, MA 02115, USA
| | - Jakob T Sieker
- Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Gary H Chang
- Department of Medicine, Boston University School of Medicine, Boston, MA 02115, USA
| | | | - Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anand Masson
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Johannes Konrad
- Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shayan Hosseinzadeh
- Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Maridas
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Vicki Rosen
- Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Neil Roach
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Urfer-Buchwalder A, Urfer R. Identification of a Nuclear Respiratory Factor 1 Recognition Motif in the Apolipoprotein E Variant APOE4 linked to Alzheimer's Disease. Sci Rep 2017; 7:40668. [PMID: 28094792 PMCID: PMC5240558 DOI: 10.1038/srep40668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer’s disease affects tens of millions of people worldwide and its prevalence continues to rise. It is caused by a combination of a subject’s heredity, environment, lifestyle, and medical condition. The most significant genetic risk factor for late onset Alzheimer’s disease is a variant of the apolipoprotein E gene, APOE4. Here we show that the single nucleotide polymorphism rs429358 that defines APOE4 is located in a short sequence motif repeated several times within exon 4 of apolipoprotein E, reminiscent of the structure of transcriptional enhancers. A JASPAR database search predicts that the T to C transition in rs429358 generates a binding motif for nuclear respiratory factor NRF1. This site appears to be part of a binding site cluster for this transcription factor on exon 4 of APOE. This de novo NRF1 binding site has therefore the potential to affect the expression of multiple genes in its genomic vicinity. Our in silico analysis, suggesting a novel function for APOE4 at the DNA level, offers a potential mechanism for the observed tissue specific neurodegeneration and the role of environmental factors in Alzheimer’s disease etiology.
Collapse
Affiliation(s)
| | - Roman Urfer
- Selonterra LLC, 1025 Alameda de las Pulgas, Suite 126, Belmont CA 94002, USA
| |
Collapse
|
5
|
Wang B, Wang W, Ni F. Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing. Plast Reconstr Surg 2017. [DOI: 10.1007/978-981-10-5101-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW. Gremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. Mech Dev 2015; 138 Pt 3:256-67. [DOI: 10.1016/j.mod.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
|
7
|
Abstract
Polydactyly is one of the most common inherited limb abnormalities, characterised by supernumerary fingers or toes. It results from disturbances in the normal programme of the anterior-posterior axis of the developing limb, with diverse aetiology and variable inter- and intra-familial clinical features. Polydactyly can occur as an isolated disorder (non-syndromic polydactyly) or as a part of an anomaly syndrome (syndromic polydactyly). On the basis of the anatomic location of the duplicated digits, non-syndromic polydactyly is divided into three kinds, including preaxial polydactyly, axial polydactyly and postaxial polydactyly. Non-syndromic polydactyly frequently exhibits an autosomal dominant inheritance with variable penetrance. To date, in human, at least ten loci and four disease-causing genes, including the GLI3 gene, the ZNF141 gene, the MIPOL1 gene and the PITX1 gene, have been identified. In this paper, we review clinical features of non-syndromic polydactyly and summarise the recent progress in the molecular genetics, including loci and genes that are responsible for the disorder, the signalling pathways that these genetic factors are involved in, as well as animal models of the disorder. These progresses will improve our understanding of the complex disorder and have implications on genetic counselling such as prenatal diagnosis.
Collapse
|
8
|
Disruptions in a cluster of computationally identified enhancers near FOXC1 and GMDS may influence brain development. Neurogenetics 2015; 17:1-9. [PMID: 26382291 PMCID: PMC4701781 DOI: 10.1007/s10048-015-0458-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2015] [Indexed: 11/25/2022]
Abstract
Regulatory elements are more evolutionarily conserved and provide a larger mutational target than coding regions of the human genome, suggesting that mutations in non-coding regions contribute significantly to development and disease. Using a computational approach to predict gene regulatory enhancers, we found that many known and predicted embryonic enhancers cluster in genomic loci harboring development-associated genes. One of the densest clusters of predicted enhancers in the human genome is near the genes GMDS and FOXC1. GMDS encodes a short-chain mannose dehydrogenase enzyme involved in the regulation of hindbrain neural migration, and FOXC1 encodes a developmental transcription factor required for brain, heart, and eye development. We experimentally validate four novel enhancers in this locus and demonstrate that these enhancers show consistent activity during embryonic development in domains that overlap with the expression of FOXC1 and GMDS. These four enhancers contain binding motifs for several transcription factors, including the ZIC family of transcription factors. Removal of the ZIC binding sites significantly alters enhancer activity in three of these enhancers, reducing expression in the eye, hindbrain, and limb, suggesting a mechanism whereby ZIC family members may transcriptionally regulate FOXC1 and/or GMDS expression. Our findings uncover novel enhancer regions that may control transcription in a topological domain important for embryonic development.
Collapse
|
9
|
Dorshorst B, Harun-Or-Rashid M, Bagherpoor AJ, Rubin CJ, Ashwell C, Gourichon D, Tixier-Boichard M, Hallböök F, Andersson L. A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes. PLoS Genet 2015; 11:e1004947. [PMID: 25789773 PMCID: PMC4366209 DOI: 10.1371/journal.pgen.1004947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022] Open
Abstract
Duplex-comb (D) is one of three major loci affecting comb morphology in the domestic chicken. Here we show that the two Duplex-comb alleles, V-shaped (D*V) and Buttercup (D*C), are both associated with a 20 Kb tandem duplication containing several conserved putative regulatory elements located 200 Kb upstream of the eomesodermin gene (EOMES). EOMES is a T-box transcription factor that is involved in mesoderm specification during gastrulation. In D*V and D*C chicken embryos we find that EOMES is ectopically expressed in the ectoderm of the comb-developing region as compared to wild-type embryos. The confinement of the ectopic expression of EOMES to the ectoderm is in stark contrast to the causal mechanisms underlying the two other major comb loci in the chicken (Rose-comb and Pea-comb) in which the transcription factors MNR2 and SOX5 are ectopically expressed strictly in the mesenchyme. Interestingly, the causal mutations of all three major comb loci in the chicken are now known to be composed of large-scale structural genomic variants that each result in ectopic expression of transcription factors. The Duplex-comb locus also illustrates the evolution of alleles in domestic animals, which means that alleles evolve by the accumulation of two or more consecutive mutations affecting the phenotype. We do not yet know whether the V-shaped or Buttercup allele correspond to the second mutation that occurred on the haplotype of the original duplication event.
Collapse
Affiliation(s)
- Ben Dorshorst
- Science for Life Laboratory, Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | | | - Carl-Johan Rubin
- Science for Life Laboratory, Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chris Ashwell
- Prestage Dept. of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David Gourichon
- INRA, UE 1295 PEAT Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | | | - Finn Hallböök
- Dept. of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
10
|
Davies KTJ, Tsagkogeorga G, Rossiter SJ. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals. BMC Evol Biol 2014; 14:261. [PMID: 25523630 PMCID: PMC4302572 DOI: 10.1186/s12862-014-0261-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. RESULTS Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. CONCLUSIONS Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
11
|
Kolovos P, van de Werken HJ, Kepper N, Zuin J, Brouwer RW, Kockx CE, Wendt KS, van IJcken WF, Grosveld F, Knoch TA. Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 2014; 7:10. [PMID: 25031611 PMCID: PMC4100494 DOI: 10.1186/1756-8935-7-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Background Significant efforts have recently been put into the investigation of the spatial organization and the chromatin-interaction networks of genomes. Chromosome conformation capture (3C) technology and its derivatives are important tools used in this effort. However, many of these have limitations, such as being limited to one viewpoint, expensive with moderate to low resolution, and/or requiring a large sequencing effort. Techniques like Hi-C provide a genome-wide analysis. However, it requires massive sequencing effort with considerable costs. Here we describe a new technique termed Targeted Chromatin Capture (T2C), to interrogate large selected regions of the genome. T2C provides an unbiased view of the spatial organization of selected loci at superior resolution (single restriction fragment resolution, from 2 to 6 kbp) at much lower costs than Hi-C due to the lower sequencing effort. Results We applied T2C on well-known model regions, the mouse β-globin locus and the human H19/IGF2 locus. In both cases we identified all known chromatin interactions. Furthermore, we compared the human H19/IGF2 locus data obtained from different chromatin conformation capturing methods with T2C data. We observed the same compartmentalization of the locus, but at a much higher resolution (single restriction fragments vs. the common 40 kbp bins) and higher coverage. Moreover, we compared the β-globin locus in two different biological samples (mouse primary erythroid cells and mouse fetal brain), where it is either actively transcribed or not, to identify possible transcriptional dependent interactions. We identified the known interactions in the β-globin locus and the same topological domains in both mouse primary erythroid cells and in mouse fetal brain with the latter having fewer interactions probably due to the inactivity of the locus. Furthermore, we show that interactions due to the important chromatin proteins, Ldb1 and Ctcf, in both tissues can be analyzed easily to reveal their role on transcriptional interactions and genome folding. Conclusions T2C is an efficient, easy, and affordable with high (restriction fragment) resolution tool to address both genome compartmentalization and chromatin-interaction networks for specific genomic regions at high resolution for both clinical and non-clinical research.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Harmen Jg van de Werken
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Nick Kepper
- Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jessica Zuin
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Rutger Ww Brouwer
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Christel Em Kockx
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Wilfred Fj van IJcken
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
12
|
Lettice LA, Williamson I, Devenney PS, Kilanowski F, Dorin J, Hill RE. Development of five digits is controlled by a bipartite long-range cis-regulator. Development 2014; 141:1715-25. [PMID: 24715461 PMCID: PMC3978833 DOI: 10.1242/dev.095430] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC-Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
13
|
Bhatia S, Kleinjan DA. Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum Genet 2014; 133:815-45. [DOI: 10.1007/s00439-014-1424-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/18/2014] [Indexed: 01/05/2023]
|
14
|
Anderson E, Peluso S, Lettice LA, Hill RE. Human limb abnormalities caused by disruption of hedgehog signaling. Trends Genet 2012; 28:364-73. [DOI: 10.1016/j.tig.2012.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 12/23/2022]
|
15
|
Robb EA, Delany ME. The expression of preaxial polydactyly is influenced by modifying genetic elements and is not maintained by chromosomal inversion in an avian biomedical model. Cytogenet Genome Res 2012; 136:50-68. [PMID: 22286052 DOI: 10.1159/000335005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 12/23/2022] Open
Abstract
Polydactyly (Po) is a common mutation found in many vertebrates. The UCD-Po.003 congenic chicken line was previously characterized for Po inheritance (autosomal dominant) and the mutation was mapped to chromosome 2p. Here, we describe for the first time the range and variability of the phenotype in this congenic line. Further, we studied the hypothesis that a chromosomal inversion was responsible for the maintenance of a large (6.3 Mb) candidate gene region. Fluorescence in situ hybridization employing BACs encompassing a 10.7-Mb region of GGA2p showed that the Po chromosome was normal, i.e. exhibits the wild-type BAC order. Continued fine-mapping along with a change in breeding strategy reduced the size of the causative region to 1.43 Mb. Recent research indicates that the cause of preaxial Po resides within a 794-bp highly conserved zone of polarizing activity regulatory sequence (ZRS) element located in intron 5 of the LMBR1 gene; however, the ZRS polymorphism of interest is found in some but not all breeds of polydactylous chicken. Therefore, we sequenced the ZRS in 101 heterozygous and 30 unaffected (wild-type) individuals to establish the relevance of this region to the Po condition in the UCD-Po.003 congenic line. A single point mutation (C/A at coordinate GGA2p: 8,414,121) within the ZRS segregated with carrier status. The polydactylous UCD-Silkie line also maintains this SNP in addition to a single base deletion. An inheritance analysis of the phenotypic variation in UCD-Po.003 suggests recessive epistasis as the mode of inheritance for the additional modifying genetic elements, residing outside the ZRS, to impact the preaxial polydactyl phenotype. These results contribute to our understanding of the cause of Po in an important vertebrate model.
Collapse
Affiliation(s)
- E A Robb
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Lettice LA, Daniels S, Sweeney E, Venkataraman S, Devenney PS, Gautier P, Morrison H, Fantes J, Hill RE, FitzPatrick DR. Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat 2011; 32:1492-9. [PMID: 21948517 DOI: 10.1002/humu.21615] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/01/2011] [Indexed: 01/19/2023]
Abstract
Disruption of the long-range cis-regulation of developmental gene expression is increasingly recognized as a cause of human disease. Here, we report a novel type of long-range cis-regulatory mutation, in which ectopic expression of a gene is driven by an enhancer that is not its own. We have termed this gain of regulatory information as "enhancer adoption." We mapped the breakpoints of a de novo 7q inversion in a child with features of a holoprosencephaly spectrum (HPES) disorder and severe upper limb syndactyly with lower limb synpolydactyly. The HPES plausibly results from the 7q36.3 breakpoint dislocating the sonic hedgehog (SHH) gene from enhancers that are known to drive expression in the early forebrain. However, the limb phenotype cannot be explained by loss of known SHH enhancers. The SHH transcription unit is relocated to 7q22.1, ∼190 kb 3' of a highly conserved noncoding element (HCNE2) within an intron of EMID2. We show that HCNE2 functions as a limb bud enhancer in mouse embryos and drives ectopic expression of Shh in vivo recapitulating the limb phenotype in the child. This developmental genetic mechanism may explain a proportion of the novel or unexplained phenotypes associated with balanced chromosome rearrangements.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maas SA, Suzuki T, Fallon JF. Identification of spontaneous mutations within the long-range limb-specific Sonic hedgehog enhancer (ZRS) that alter Sonic hedgehog expression in the chicken limb mutants oligozeugodactyly and silkie breed. Dev Dyn 2011; 240:1212-22. [PMID: 21509895 DOI: 10.1002/dvdy.22634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The evolutionarily conserved, non-coding ~800-base-pair (bp) zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactyly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb Shh expression, has a single bp change within the ZRS. Using an in vivo reporter assay to examine enhancer function in the chick limb, we demonstrate that the wild-type ZRS drives β-galactosidase reporter expression in the ZPA of both wild-type and ozd limbs. The Silkie ZRS drives β-galactosidase in both posterior and anterior Shh domains in wild-type limb buds. These results support the hypothesis that the ZRS integrates positive and negative prepatterned regulatory inputs in the chicken model system and demonstrate the utility of the chicken limb as an efficient genetic system for gene regulatory studies.
Collapse
Affiliation(s)
- Sarah A Maas
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
18
|
Albuisson J, Isidor B, Giraud M, Pichon O, Marsaud T, David A, Le Caignec C, Bezieau S. Identification of two novel mutations in Shh long-range regulator associated with familial pre-axial polydactyly. Clin Genet 2011; 79:371-7. [PMID: 20569257 DOI: 10.1111/j.1399-0004.2010.01465.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pre-axial polydactyly type II (PPDII, MIM #174500), Werner mesomelic syndrome (MIM %188770) and Haas polysyndactyly (MIM #186200) are a group of closely related conditions caused by mutations in a long-range Sonic hedgehog (SHH, MIM *600725) regulator called ZRS. To date, 19 point mutations, 10 duplications and 1 triplication of the ZRS associated with those pre-axial polydactylies have been reported in humans, mice, cats and chickens. Some of these have been shown to cause ectopic expression of Shh in the limb bud in mice, leading to a polydactylous phenotype, but the precise mechanism by which ZRS mutations generate this phenotype remains unknown. We present two PPDII families with fully penetrant point mutations in ultra-conserved predicted binding sites for transcription factors SOX9 and PAX3, two possible candidates for regulating SHH expression. Screening for point mutations or copy-number variation of the ZRS, high-resolution array-CGH, and screening of other conserved non-coding sequences (CNS) surrounding SHH in a third family are negative. This is the sixth PPDII pedigree with possible linkage to 7q36 that presents with no detectable ZRS mutation. We hypothesize that another nearby regulatory sequence, or an undetected position effect between ZRS and SHH, could be responsible for negative familial cases linked to 7q36.
Collapse
Affiliation(s)
- J Albuisson
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, Nantes Cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dunn IC, Paton IR, Clelland AK, Sebastian S, Johnson EJ, McTeir L, Windsor D, Sherman A, Sang H, Burt DW, Tickle C, Davey MG. The chicken polydactyly (Po) locus causes allelic imbalance and ectopic expression of Shh during limb development. Dev Dyn 2011; 240:1163-72. [PMID: 21465618 DOI: 10.1002/dvdy.22623] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis-regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly.
Collapse
Affiliation(s)
- Ian C Dunn
- Division of Genetics and Genomics, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wellik D, Sun X, Boekhoff-Falk G. John F. Fallon, PhD: Fifty years of excellence in limb research and counting. Dev Dyn 2011; 240:909-14. [DOI: 10.1002/dvdy.22594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2011] [Indexed: 11/07/2022] Open
|
21
|
Abbasi AA. Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data. Dev Dyn 2011; 240:1005-16. [PMID: 21337665 DOI: 10.1002/dvdy.22572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 01/18/2023] Open
Abstract
The new body of evidence from fossils and comparative-developmental analysis of subset of appendicular patterning genes has revealed that limb elements seen in tetrapods are assembled in fish fin over evolutionary time. However, despite of deep homology in basic structure and underlying developmental system, there remains a large morphological gap between distal elements of tetrapod limb and distal fin skeleton of tetrapodomorph fish. Understanding the genetic basis of major transformations in distal-limb morphology is the next challenge for evolutionary developmental biologists. Here by integrating data from fossils, comparative-developmental and genetic studies, models are proposed describing the evolution of cis-regulatory elements as a basis for diversification of appendicular architecture. Instead of emphasizing the subset of developmental genes, for instance Hoxd genes, the focus here is on the significance of elucidating cis-regulatory elements for multiple other key molecular players of limb/fin development and genetic/molecular interactions among them, for a better understanding of the developmental and genetic basis of limb evolution.
Collapse
Affiliation(s)
- Amir Ali Abbasi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
22
|
Robb EA, Gitter CL, Cheng HH, Delany ME. Chromosomal mapping and candidate gene discovery of chicken developmental mutants and genome-wide variation analysis of MHC congenics. ACTA ACUST UNITED AC 2011; 102:141-56. [PMID: 21273214 DOI: 10.1093/jhered/esq122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chicken has been widely used in experimental research given its importance to agriculture and its utility as a model for vertebrate biology and biomedical pursuits for over 100 years. Herein we used advanced technologies to investigate the genomic characteristics of specialized chicken congenic genetic resources developed on a highly inbred background. An Illumina 3K chicken single nucleotide polymorphism (SNP) array was utilized to study variation within and among major histocompatibility complex (MHC)-congenic lines as well as investigate line-specific genomic diversity, inbreeding coefficients, and MHC B haplotype-specific GGA 16 SNP profiles. We also investigated developmental mutant-congenic lines to map a number of single-gene mutations using both the Illumina 3K array and a recently developed Illumina 60K chicken SNP array. In addition to identifying the chromosomes and specific subregions, the mapping results affirmed prior analyses indicating recessive or dominant and autosomal or sex chromosome modes of inheritance. Priority candidate genes are described for each mutation based on association with similar phenotypes in other vertebrates. These single-gene mutations provide a means of studying amniote development and in particular serve as invaluable biomedical models for similar malformations found in human.
Collapse
Affiliation(s)
- Elizabeth A Robb
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
23
|
Oberg KC, Feenstra JM, Manske PR, Tonkin MA. Developmental biology and classification of congenital anomalies of the hand and upper extremity. J Hand Surg Am 2010; 35:2066-76. [PMID: 21134615 DOI: 10.1016/j.jhsa.2010.09.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 02/02/2023]
Abstract
Recent investigations into the mechanism of limb development have clarified the roles of several molecules, their pathways, and interactions. Characterization of the molecular pathways that orchestrate limb development has provided insight into the etiology of many limb malformations. In this review, we describe how the insights from developmental biology are related to clinically relevant anomalies and the current classification schemes used to define, categorize, and communicate patterns of upper limb malformations. We advocate an updated classification scheme for upper limb anomalies that incorporates our current molecular perspective of limb development and the pathogenetic basis for malformations using dysmorphology terminology. We anticipate that this scheme will improve the utility of a classification as a basis for diagnosis, treatment, and research.
Collapse
Affiliation(s)
- Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | |
Collapse
|
24
|
Zhang Z, Sui P, Dong A, Hassell J, Cserjesi P, Chen YT, Behringer RR, Sun X. Preaxial polydactyly: interactions among ETV, TWIST1 and HAND2 control anterior-posterior patterning of the limb. Development 2010; 137:3417-26. [PMID: 20826535 DOI: 10.1242/dev.051789] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preaxial polydactyly (PPD) is a common limb-associated birth defect characterized by extra digit(s) in the anterior autopod. It often results from ectopic sonic hedgehog (Shh) expression in the anterior limb bud. Although several transcription factors are known to restrict Shh expression to the posterior limb bud, how they function together remains unclear. Here we provide evidence from mouse conditional knockout limb buds that the bHLH family transcription factor gene Twist1 is required to inhibit Shh expression in the anterior limb bud mesenchyme. More importantly, we uncovered genetic synergism between Twist1 and the ETS family transcription factor genes Etv4 and Etv5 (collectively Etv), which also inhibit Shh expression. Biochemical data suggest that this genetic interaction is a result of direct association between TWIST1 and ETV proteins. Previous studies have shown that TWIST1 functions by forming homodimers or heterodimers with other bHLH factors including HAND2, a key positive regulator of Shh expression. We found that the PPD phenotype observed in Etv mutants is suppressed by a mutation in Hand2, indicative of genetic antagonism. Furthermore, overexpression of ETV proteins influences the dimerization of these bHLH factors. Together, our data suggest that through biochemical interactions, the Shh expression regulators ETV, TWIST1 and HAND2 attain a precise balance to establish anterior-posterior patterning of the limb.
Collapse
Affiliation(s)
- Zhen Zhang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wieczorek D, Pawlik B, Li Y, Akarsu NA, Caliebe A, May KJW, Schweiger B, Vargas FR, Balci S, Gillessen-Kaesbach G, Wollnik B. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat 2010; 31:81-9. [PMID: 19847792 DOI: 10.1002/humu.21142] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Werner mesomelic syndrome (WMS) is an autosomal dominant disorder with unknown molecular etiology characterized by hypo- or aplasia of the tibiae in addition to the preaxial polydactyly (PPD) of the hands and feet and/or five-fingered hand with absence of thumbs. We show that point mutations of a specific nucleotide within the sonic hedgehog (SHH) regulatory region (ZRS) cause WMS. In a previously unpublished WMS family, we identified the causative G>A transition at position 404 of the ZRS, and in six affected family members of a second WMS family we found a 404G>C mutation of the ZRS. The 404G>A ZRS mutation is known as the "Cuban mutation" of PPD type II (PPD2). Interestingly, the index patient of that family had tibial hypoplasia as well. These data provide the first evidence that WMS is caused by a specific ZRS mutation, which leads to strong ectopic SHH expression. In contrast, we show that complete duplications of the ZRS region lead to type Haas polysyndactyly or triphalangeal thumb-polysyndactyly syndrome, but do not affect lower limb development. We suggest the term "ZRS-associated syndromes" and a clinical subclassification for the continuum of limb malformations caused by different molecular alterations of the ZRS.
Collapse
Affiliation(s)
- Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Hufelandstr. 55, Essen 45122, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dorshorst B, Okimoto R, Ashwell C. Genomic Regions Associated with Dermal Hyperpigmentation, Polydactyly and Other Morphological Traits in the Silkie Chicken. J Hered 2010; 101:339-50. [DOI: 10.1093/jhered/esp120] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Zhao J, Ding J, Li Y, Ren K, Sha J, Zhu M, Gao X. HnRNP U mediates the long-range regulation of Shh expression during limb development. Hum Mol Genet 2009; 18:3090-7. [DOI: 10.1093/hmg/ddp250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
28
|
Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 2009; 136:1665-74. [PMID: 19369396 DOI: 10.1242/dev.032714] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sonic hedgehog (Shh) pathway plays indispensable roles in the morphogenesis of mouse epithelial linings of the oral cavity and respiratory and digestive tubes. However, no enhancers that regulate regional Shh expression within the epithelial linings have been identified so far. In this study, comparison of genomic sequences across mammalian species and teleost fishes revealed three novel conserved non-coding sequences (CNCSs) that cluster in a region 600 to 900 kb upstream of the transcriptional start site of the mouse Shh gene. These CNCSs drive regional transgenic lacZ reporter expression in the epithelial lining of the oral cavity, pharynx, lung and gut. Together, these enhancers recapitulate the endogenous Shh expression domain within the major epithelial linings. Notably, genomic arrangement of the three CNCSs shows co-linearity that mirrors the order of the epithelial expression domains along the anteroposterior body axis. The results suggest that the three CNCSs are epithelial lining-specific long-range Shh enhancers, and that their actions partition the continuous epithelial linings into three domains: ectoderm-derived oral cavity, endoderm-derived pharynx, and respiratory and digestive tubes of the mouse. Targeted deletion of the pharyngeal epithelium specific CNCS results in loss of endogenous Shh expression in the pharynx and postnatal lethality owing to hypoplasia of the soft palate, epiglottis and arytenoid. Thus, this long-range enhancer is indispensable for morphogenesis of the pharyngeal apparatus.
Collapse
Affiliation(s)
- Tomoko Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S. Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. J Clin Invest 2008; 119:146-56. [PMID: 19075394 DOI: 10.1172/jci36851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/22/2008] [Indexed: 11/17/2022] Open
Abstract
Individuals with the birth defect synpolydactyly (SPD) have 1 or more digit duplicated and 2 or more digits fused together. One form of SPD is caused by polyalanine expansions in homeobox d13 (Hoxd13). Here we have used the naturally occurring mouse mutant that has the same mutation, the SPD homolog (Spdh) allele, and a similar phenotype, to investigate the molecular pathogenesis of SPD. A transgenic approach and crossing experiments showed that the Spdh allele is a combination of loss and gain of function. Here we identify retinaldehyde dehydrogenase 2 (Raldh2), the rate-limiting enzyme for retinoic acid (RA) synthesis in the limb, as a direct Hoxd13 target and show decreased RA production in limbs from Spdh/Spdh mice. Intrauterine treatment with RA restored pentadactyly in Spdh/Spdh mice. We further show that RA and WT Hoxd13 suppress chondrogenesis in mesenchymal progenitor cells, whereas Hoxd13 encoded by Spdh promotes cartilage formation in primary cells isolated from Spdh/Spdh limbs, and that this was associated with increased expression of Sox6/9. Increased Sox9 expression and ectopic cartilage formation in the interdigital mesenchyme of limbs from Spdh/Spdh mice suggest uncontrolled differentiation of these cells into the chondrocytic lineage. Thus, we propose that mutated Hoxd13 causes polydactyly in SPD by inducing extraneous interdigital chondrogenesis, both directly and indirectly, via a reduction in RA levels.
Collapse
Affiliation(s)
- Pia Kuss
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Canine polydactyl mutations with heterogeneous origin in the conserved intronic sequence of LMBR1. Genetics 2008; 179:2163-72. [PMID: 18689889 DOI: 10.1534/genetics.108.087114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Canine preaxial polydactyly (PPD) in the hind limb is a developmental trait that restores the first digit lost during canine evolution. Using a linkage analysis, we previously demonstrated that the affected gene in a Korean breed is located on canine chromosome 16. The candidate locus was further limited to a linkage disequilibrium (LD) block of <213 kb composing the single gene, LMBR1, by LD mapping with single nucleotide polymorphisms (SNPs) for affected individuals from both Korean and Western breeds. The ZPA regulatory sequence (ZRS) in intron 5 of LMBR1 was implicated in mammalian polydactyly. An analysis of the LD haplotypes around the ZRS for various dog breeds revealed that only a subset is assigned to Western breeds. Furthermore, two distinct affected haplotypes for Asian and Western breeds were found, each containing different single-base changes in the upstream sequence (pZRS) of the ZRS. Unlike the previously characterized cases of PPD identified in the mouse and human ZRS regions, the canine mutations in pZRS lacked the ectopic expression of sonic hedgehog in the anterior limb bud, distinguishing its role in limb development from that of the ZRS.
Collapse
|
31
|
Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR. Regulatory divergence modifies limb length between mammals. Genes Dev 2008; 22:141-51. [PMID: 18198333 DOI: 10.1101/gad.1620408] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural selection acts on variation within populations, resulting in modified organ morphology, physiology, and ultimately the formation of new species. Although variation in orthologous proteins can contribute to these modifications, differences in DNA sequences regulating gene expression may be a primary source of variation. We replaced a limb-specific transcriptional enhancer of the mouse Prx1 locus with the orthologous sequence from a bat. Prx1 expression directed by the bat enhancer results in elevated transcript levels in developing forelimb bones and forelimbs that are significantly longer than controls because of endochondral bone formation alterations. Surprisingly, deletion of the mouse Prx1 limb enhancer results in normal forelimb length and Prx1 expression, revealing regulatory redundancy. These findings suggest that mutations accumulating in pre-existing noncoding regulatory sequences within a population are a source of variation for the evolution of morphological differences between species and that cis-regulatory redundancy may facilitate accumulation of such mutations.
Collapse
Affiliation(s)
- Chris J Cretekos
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kleinjan DA, Lettice LA. Long-range gene control and genetic disease. ADVANCES IN GENETICS 2008; 61:339-88. [PMID: 18282513 DOI: 10.1016/s0065-2660(07)00013-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The past two decades have seen great progress in the elucidation of the genetic basis of human genetic disease. Many clinical phenotypes have been linked with mutations or deletions in specific causative genes. However, it is often less recognized that in addition to the integrity of the protein-coding sequences, human health critically also depends on the spatially, temporally, and quantitatively correct expression of those genes. Genetic disease can therefore equally be caused by disruption of the regulatory mechanisms that ensure proper gene expression. The term "position effect" is used in those situations where the expression level of a gene is deleteriously affected by an alteration in its chromosomal environment, while maintaining an intact transcription unit. Here, we review recent advances in our understanding of the possible mechanisms of a number of "position effect" disease cases and discuss the findings with respect to current models for genome organization and long-range control of gene expression.
Collapse
Affiliation(s)
- Dirk A Kleinjan
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | | |
Collapse
|
33
|
Lettice LA, Hill AE, Devenney PS, Hill RE. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum Mol Genet 2007; 17:978-85. [PMID: 18156157 DOI: 10.1093/hmg/ddm370] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Precise spatial and temporal control of developmental genes is crucial during embryogenesis. Regulatory mutations that cause the misexpression of key developmental genes may underlie a number of developmental abnormalities. The congenital abnormality preaxial polydactyly, extra digits, is an example of this novel class of mutations and is caused by ectopic expression of the signalling molecule Sonic Hedgehog (SHH) in the developing limb bud. Mutations in the long-distant, limb-specific cis-regulator for SHH, called the ZRS, are responsible for the ectopic expression which underlies the abnormality. Here, we show that populations of domestic cats which manifest extra digits, including the celebrated polydactylous Hemingway's cats, also contain mutations within the ZRS. The polydactylous cats add significantly to the number of mutations previously reported in mouse and human and to date, all are single nucleotide substitutions. A mouse transgenic assay shows that these single nucleotide substitutions operate as gain-of-function mutations that activate Shh expression at an ectopic embryonic site; and that the sequence context of the mutation is responsible for a variable regulatory output. The plasticity of the regulatory response correlates with both the phenotypic variability and with species differences. The polydactyly mutations define a new genetic mechanism that results in human congenital abnormalities and identifies a pathogenetic mechanism that may underlie other congenital diseases.
Collapse
Affiliation(s)
- Laura A Lettice
- MRC-Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
34
|
Strähle U, Rastegar S. Conserved non-coding sequences and transcriptional regulation. Brain Res Bull 2007; 75:225-30. [PMID: 18331875 DOI: 10.1016/j.brainresbull.2007.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 01/05/2023]
Abstract
Genes coding for transcription factors and developmental regulators have a high likelihood to harbour cis-regulatory regions that are structurally conserved among orthologous genes in the vertebrate lineage. These regions can span up to several hundred basepairs with 70 and more percent sequence identity between fish and mammals. Even though this conservation is an efficient tool to discover cis-regulatory regions, we know little about why these specific genes maintain such highly conserved regulatory sequences. Here, we summarise work of the past few years on the regulatory modules of the sonic hedgehog and neurogenin1 genes. We will discuss the high sequence conservation of the regulatory elements in the context of models of enhancer evolution. Our data suggest that conservation of sequence does not necessarily imply a conserved function in other vertebrates.
Collapse
Affiliation(s)
- Uwe Strähle
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany.
| | | |
Collapse
|
35
|
Hill RE. How to make a zone of polarizing activity: insights into limb development via the abnormality preaxial polydactyly. Dev Growth Differ 2007; 49:439-48. [PMID: 17661738 DOI: 10.1111/j.1440-169x.2007.00943.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Early in vertebrate limb development, a program initiates that polarizes the limb along the antero-posterior axis. The mesenchyme at the posterior margin is ultimately responsible for the asymmetry due to a region called the zone of polarizing activity (ZPA). The ZPA produces and secretes the molecule SHH, which coordinates the patterning of the resulting digits. Preaxial polydactyly (PPD) is a commonly occurring limb abnormality; investigating the genetic basis of this defect has provided insights into our understanding of digit patterning. PPD disrupts limb asymmetry by producing an ectopic ZPA at the opposite margin of the limb bud. Mutations in the long-range, limb-specific regulatory element of the Shh gene are responsible for the defect. Genetic analysis of this limb abnormality provides an important approach in understanding the mechanisms that control digit patterning.
Collapse
Affiliation(s)
- Robert E Hill
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
36
|
Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, Ide H, Tamura K. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 2007; 312:171-82. [PMID: 17961537 DOI: 10.1016/j.ydbio.2007.09.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/23/2007] [Accepted: 09/10/2007] [Indexed: 02/02/2023]
Abstract
The Xenopus adult limb has very limited regeneration ability, and only a simple cartilaginous spike structure without digits is formed after limb amputation. We found that expression of Shh and its downstream genes is absent from the regenerating blastema of the Xenopus froglet limb. Moreover, we found that a limb enhancer region of the Shh gene is highly methylated in the froglet, although the sequence is hypomethylated in the Xenopus tadpole, which has complete limb regeneration ability. These findings, together with the fact that the promoter region of Shh is hardly methylated in Xenopus, suggest that regenerative failure (deficiency in repatterning) in the Xenopus adult limb is associated with methylation status of the enhancer region of Shh and that a target-specific epigenetic regulation is involved in gene re-activation for repatterning during the Xenopus limb regeneration process. Because the methylation level of the enhancer region was low in other amphibians that have Shh expression in the blastemas, a low methylation status may be the basic condition under which transcriptional regulation of Shh expression can progress during the limb regeneration process. These findings provide the first evidence for a relationship between epigenetic regulation and pattern formation during organ regeneration in vertebrates.
Collapse
Affiliation(s)
- Nayuta Yakushiji
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412-24. [PMID: 17514509 PMCID: PMC1998876 DOI: 10.1007/s00335-007-9014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 12/23/2022]
Abstract
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models.
Collapse
Affiliation(s)
- Peter L. Oliver
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Emmanuelle Bitoun
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, MRC Functional Genetics Unit, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|
38
|
Wang ZQ, Tian SH, Shi YZ, Zhou PT, Wang ZY, Shu RZ, Hu L, Kong X. A single C to T transition in intron 5 of LMBR1 gene is associated with triphalangeal thumb-polysyndactyly syndrome in a Chinese family. Biochem Biophys Res Commun 2007; 355:312-7. [PMID: 17300748 DOI: 10.1016/j.bbrc.2007.01.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/23/2007] [Indexed: 12/14/2022]
Abstract
Triphalangeal thumb-polysyndactyly syndrome (TPT-PS) is a type of human hand-foot malformation. In this study, we collected data from a Chinese family with TPT-PS and mapped the disease region to chromosome 7q36. By using a fine mapping study and a haplotype analysis, we narrowed the affected region to 1.7cM between markers D7S2465 and D7S2423, which contains four candidate genes: HLXB9, LMBR1, NOM1, and RNF32. By sequence analysis, we found no sequence alterations, which are specific to the patients in the transcribed regions and in the intron-exon boundaries among the four genes. After closely examining intron 5 of the LMBR1 gene, we discovered a single C to T transition in the affected TPT-PS individuals of the Chinese subject family. The position of this C to T transition is located close to other sequence alterations involved in several preaxial polydactyly (PPD) families, supporting the notion that intron 5 of LMBR1 contains a cis-acting regulator of limb-specific Sonic Hedgehog (SHH). We postulate that the disruption of this cis-regulator via a single C to T transition results in the dysregulation of SHH, which leads to the TPT-PS found in this case.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Institute of Health Science, Shanghai Institutes for Biological Sciences of CAS and Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dahn RD, Davis MC, Pappano WN, Shubin NH. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature 2006; 445:311-4. [PMID: 17187056 DOI: 10.1038/nature05436] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 11/09/2006] [Indexed: 11/08/2022]
Abstract
The genetic mechanisms regulating tetrapod limb development are well characterized, but how they were assembled during evolution and their function in basal vertebrates is poorly understood. Initial studies report that chondrichthyans, the most primitive extant vertebrates with paired appendages, differ from ray-finned fish and tetrapods in having Sonic hedgehog (Shh)-independent patterning of the appendage skeleton. Here we demonstrate that chondrichthyans share patterns of appendage Shh expression, Shh appendage-specific regulatory DNA, and Shh function with ray-finned fish and tetrapods. These studies demonstrate that some aspects of Shh function are deeply conserved in vertebrate phylogeny, but also highlight how the evolution of Shh regulation may underlie major morphological changes during appendage evolution.
Collapse
Affiliation(s)
- Randall D Dahn
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
40
|
Robert B, Lallemand Y. Anteroposterior patterning in the limb and digit specification: contribution of mouse genetics. Dev Dyn 2006; 235:2337-52. [PMID: 16894622 DOI: 10.1002/dvdy.20890] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The limb has been a privileged object of investigation and reflection for scientists over the past two centuries and continues to provide a heuristic framework to analyze vertebrate development. Recently, accumulation of new data has significantly changed our view on the mechanisms of limb patterning, in particular along the anterior-posterior axis. These data have led us to revisit the mode of action of the zone of polarizing activity. They shed light on the molecular and cellular mechanisms of patterning linked to the Shh-Gli3 signaling pathway and give insights into the mechanism of activation of these cardinal factors, as well as the consequences of their activity. These new data are in good part the result of systematic Application of tools used in contemporary mouse molecular genetics. These have extended the power of mouse genetics by introducing mutational strategies that allow fine-tuned modulation of gene expression, interchromosomal deletions and duplication. They have even made the mouse embryo amenable to cell lineage analysis that used to be the realm of chick embryos. In this review, we focus on the data acquired over the last five years from the analysis of mouse limb development and discuss new perspectives opened by these results.
Collapse
Affiliation(s)
- Benoît Robert
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, Paris, France.
| | | |
Collapse
|
41
|
Masuya H, Sezutsu H, Sakuraba Y, Sagai T, Hosoya M, Kaneda H, Miura I, Kobayashi K, Sumiyama K, Shimizu A, Nagano J, Yokoyama H, Kaneko S, Sakurai N, Okagaki Y, Noda T, Wakana S, Gondo Y, Shiroishi T. A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud. Genomics 2006; 89:207-14. [PMID: 17049204 DOI: 10.1016/j.ygeno.2006.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/06/2006] [Accepted: 09/15/2006] [Indexed: 11/24/2022]
Abstract
Mammal-fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements.
Collapse
MESH Headings
- Animals
- Base Sequence
- Conserved Sequence
- DNA Primers/genetics
- Enhancer Elements, Genetic
- Ethylnitrosourea
- Extremities/embryology
- Female
- Gene Expression Regulation, Developmental
- Genes, Regulator
- Genes, Reporter
- Genetic Complementation Test
- Hedgehog Proteins/genetics
- In Situ Hybridization
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Mutant Strains
- Mice, Transgenic
- Phenotype
- Point Mutation
- Polymorphism, Single Nucleotide
- Pregnancy
Collapse
Affiliation(s)
- Hiroshi Masuya
- Mouse Functional Genomics Research Group, RIKEN GSC 3-1-1 Kouyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gómez-Skarmeta JL, Lenhard B, Becker TS. New technologies, new findings, and new concepts in the study of vertebrate cis-regulatory sequences. Dev Dyn 2006; 235:870-85. [PMID: 16395688 DOI: 10.1002/dvdy.20659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
All vertebrates share a similar early embryonic body plan and use the same regulatory genes for their development. The availability of numerous sequenced vertebrate genomes and significant advances in bioinformatics have resulted in the finding that the genomic regions of many of these developmental regulatory genes also contain highly conserved noncoding sequence. In silico discovery of conserved noncoding regions and of transcription factor binding sites as well as the development of methods for high throughput transgenesis in Xenopus and zebrafish are dramatically increasing the speed with which regulatory elements can be discovered, characterized, and tested in the context of whole live embryos. We review here some of the recent technological developments that will likely lead to a surge in research on how vertebrate genomes encode regulation of transcriptional activity, how regulatory sequences constrain genomic architecture, and ultimately how vertebrate form has evolved.
Collapse
|
43
|
Huang YQ, Deng XM, Du ZQ, Qiu X, Du X, Chen W, Morisson M, Leroux S, Ponce de Léon FA, Da Y, Li N. Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 2006; 374:10-8. [PMID: 16650944 DOI: 10.1016/j.gene.2005.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 10/24/2022]
Abstract
Polydactyly is a common malformation of vertebrate limbs. Preaxial polydactyly (PPD) has been mapped in human, mouse and chicken to the syntenic region of human 7q36. Lmbr1 was thought as the critical candidate gene for human and mouse PPD. To understand the molecular mechanism underlying chicken polydactyly, we have cloned the open reading frame (ORF) of chicken Lmbr1, which contains 1467 nucleotides. Within this ORF, we found one short and one long splice forms. The short splice form has a complete deletion of exon 4. Six cSNPs were found in the chicken ORF, and two of these cSNPs, G797A and G1255A, lead to amino acid substitutions. However, G797A substitution had no significant association with polydactyly and the G1255A substitution had very low frequency in the population. The T1254C polymorphism in exon 13 was found to be strongly associated with polydactyly. Radiation hybrid mapping of a DNA fragment containing intron 13 of the chicken Lmbr1 assigned the gene to chromosome 2 between MCW071 (a marker within the EN2 gene) and ADL0270, a syntenic region to human 7q36.
Collapse
Affiliation(s)
- Yan Qun Huang
- State Key Laboratory of Biotechnology, China Agricultural University, Beijing, 1000094 China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jeong Y, El-Jaick K, Roessler E, Muenke M, Epstein DJ. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development 2006; 133:761-72. [PMID: 16407397 DOI: 10.1242/dev.02239] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The secreted protein sonic hedgehog (Shh) plays an integral role in forming the ventral midline of the vertebrate central nervous system (CNS). In the absence of Shh function, ventral midline development is perturbed resulting in holoprosencephaly (HPE), a structural malformation of the brain, as well as in neuronal patterning and path finding defects along the length of the anteroposterior neuraxis. Central to the understanding of ventral neural tube development is how Shh transcription is regulated in the CNS. To address this issue, we devised an enhancer trap assay to systematically screen 1 Mb of DNA surrounding the Shh locus for the ability to target reporter gene expression to sites of Shh transcription in transgenic mouse embryos. This analysis uncovered six enhancers distributed over 400 kb,the combined activity of which covered all sites of Shh expression in the mouse embryonic CNS from the ventral forebrain to the posterior extent of the spinal cord. To evaluate the relative contribution of these enhancers to the overall pattern of Shh expression, individual elements were deleted in the context of a transgenic Bac reporter assay. Redundant mechanisms were found to control Shh-like reporter activity in the ventral spinal cord, hindbrain and regions of the telencephalon, whereas unique elements regulated Shh-like expression in the ventral midbrain, the majority of the ventral diencephalon and parts of the telencephalon. Three ventral forebrain enhancers locate on the distal side of translocation breakpoints that occurred upstream of Shh in human cases of HPE, suggesting that displacement of these regulatory elements from the Shh promoter is a likely cause of HPE in these individuals.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetics, University of Pennsylvania School of Medicine, Clinical Research Building, Room 470, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Zuniga A. Globalisation reaches gene regulation: the case for vertebrate limb development. Curr Opin Genet Dev 2005; 15:403-9. [PMID: 15979301 DOI: 10.1016/j.gde.2005.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, DKBW Centre for Biomedicine, University of Basel Medical School, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
46
|
Vargas AO, Fallon JF. The digits of the wing of birds are 1, 2, and 3. a review. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:206-19. [PMID: 15880771 DOI: 10.1002/jez.b.21051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fossil evidence documenting the evolutionary transition from theropod dinosaurs to birds indicates unambiguously that the digits of the wing of birds are digits 1, 2, and 3. However, some embryological evidence suggests that these digits are 2, 3, and 4. This apparent lack of correspondence has been described as the greatest challenge to the widely accepted theropod-bird link (Zhou 2004. Naturwissenschaften 91:455-471). Here we review the pertinent literature regarding the debate on the origin of birds and wing digital identity and the evidence in favor of a 1, 2, 3 identity of the wing digits. Recent molecular evidence shows that the expression of Hoxd12 and Hoxd13 in the developing wing supports the theropod-bird link. In the chicken foot and in the mouse hand and foot, digit 1 is the only digit to combine the expression of Hoxd13 with the absence of expression of Hoxd12. The same is observed in the anterior digit of the wing, suggesting it is a digit 1, as expected for a theropod. Nevertheless, Galis et al. (2005. J Exp Zool (Mol Dev Evol) in press), argue that Hoxd12 and Hoxd13 expression patterns in mutant limbs do not allow distinguishing the most anterior digit in the bird wing from digit 2. They also argue that constraints to the evolution of limb development support the 2, 3, 4 identity of the wing digits. However, the case put forward by Galis et al. is biased and flawed with regard to interpretation of mutant limbs, developmental mechanisms, stages observed, and the description of the evolutionary variation of limb development. Importantly, Galis et al. do not present evidence from wild-type limbs that counters the conclusions of Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B(1):85-89), and fail to provide molecular evidence to specifically support the hypothesis that the wing digits are 2, 3, and 4. The expression of Hoxd12 and Hoxd13 in the developing wing is consistent with the hypothesis that birds are living dinosaurs; this view can lead to a greater understanding of the actual limits to the evolutionary variation of limb development.
Collapse
Affiliation(s)
- Alexander O Vargas
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 70.079-Santiago 7, Santiago, Chile.
| | | |
Collapse
|