1
|
Feng B, Hu Y, Wang FH. Effects of ttk on development and courtship of male Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:6465-6472. [PMID: 39172052 DOI: 10.1002/ps.8381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The transcription product of tramtrack (ttk) is an important transcription factor which plays many roles in the regulation of the development, differentiation and chromosome recombination of organisms. Few studies have been reported on the specific functions of ttk in other insects except Drosophila melanogaster. Our aims are to reveal the ttk effects on development and courtship of male rice pest brown planthopper (BPH), Nilaparvata lugens. RESULTS In this study, we first assayed spatiotemporal expression of ttk in BPH, then treated the fourth nymphs of BPH with dsttk. We found most individuals died before emerging to adults, the adult eclosion rate was only 18.89%. No courtship behavior was found in individuals injected with dsttk. Further research showed that the main frequency of courtship vibration signal (CVS) 431.3 Hz in the individuals injected with dsttk was significantly higher than 223 Hz in the individuals injected with dsGFP, and female adults nearly had no response to the 431.3 Hz CVS. CONCLUSION We found that about 81% of the 4-instar nymphs of BPH treated with dsttk died before they emerged as adults, the successfully emerged adults emitted the 431.3 Hz CVS to which female adults did not respond and lost the ability of courtship. This was first finding about the functions of ttk in rice planthopper and illustrated the potential of ttk as target for RNAi to control rice planthopper. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Feng
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| | - Fang-Hai Wang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Rust K, Nystul T. Signal transduction in the early Drosophila follicle stem cell lineage. CURRENT OPINION IN INSECT SCIENCE 2020; 37:39-48. [PMID: 32087562 PMCID: PMC7155752 DOI: 10.1016/j.cois.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 05/08/2023]
Abstract
The follicle stem cell (FSC) lineage in the Drosophila ovary is a highly informative model of in vivo epithelial stem cell biology. Studies over the past 30 years have identified roles for every major signaling pathway in the early FSC lineage. These pathways regulate a wide variety of cell behaviors, including self-renewal, proliferation, survival and differentiation. Studies of cell signaling in the follicle epithelium have provided new insights into how these cell behaviors are coordinated within an epithelial stem cell lineage and how signaling pathways interact with each other in the native, in vivo context of a living tissue. Here, we review these studies, with a particular focus on how these pathways specify differences between the FSCs and their daughter cells. We also describe common themes that have emerged from these studies, and highlight new research directions that have been made possible by the detailed understanding of the follicle epithelium.
Collapse
|
3
|
Gunnar E, Bivik C, Starkenberg A, Thor S. sequoia controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Development 2016; 143:3774-3784. [PMID: 27578794 DOI: 10.1242/dev.139998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023]
Abstract
Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.
Collapse
Affiliation(s)
- Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-58185, Sweden
| |
Collapse
|
4
|
Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2013; 139:4162-71. [PMID: 23093424 DOI: 10.1242/dev.078055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epithelium surrounding each cyst. In this latter role, graded JAK/STAT activation specifies three distinct anterior follicular cell fates, suggesting that Upd is a morphogen in this system. Consistent with the JAK/STAT activation pattern in the vitellarium, Upd forms a concentration gradient on the apical surface of the follicular epithelium with a peak at its source, the polar cells. Like many morphogens, signaling and distribution of Upd are regulated by the heparan sulfate proteoglycans (HSPGs) Dally and Dally-like. Mutations in these glypican genes and in heparan sulfate biosynthetic genes result in disruption of JAK/STAT signaling, loss or abnormal formation of the stalk and significant reduction in the accumulation of extracellular Upd. Conversely, forced expression of Dally causes ectopic accumulation of Upd in follicular cells. Furthermore, biochemical studies reveal that Upd and Dally bind each other on the surface of the cell membrane. Our findings demonstrate that Drosophila glypicans regulate formation of the follicular gradient of the Upd morphogen, Upd. Furthermore, we establish the follicular epithelium as a new model for morphogen signaling in complex organ development.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rotstein B, Molnar D, Adryan B, Llimargas M. Tramtrack is genetically upstream of genes controlling tracheal tube size in Drosophila. PLoS One 2011; 6:e28985. [PMID: 22216153 PMCID: PMC3245245 DOI: 10.1371/journal.pone.0028985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes.
Collapse
Affiliation(s)
- Barbara Rotstein
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
| | - David Molnar
- Department of Genetics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Boris Adryan
- Department of Genetics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (BA); (ML)
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
- * E-mail: (BA); (ML)
| |
Collapse
|
6
|
Boyle MJ, French RL, Cosand KA, Dorman JB, Kiehart DP, Berg CA. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube. Dev Biol 2010; 346:68-79. [PMID: 20659448 DOI: 10.1016/j.ydbio.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.
Collapse
Affiliation(s)
- Michael J Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | | | | | | | | | | |
Collapse
|
7
|
Assa-Kunik E, Torres IL, Schejter ED, Johnston DS, Shilo BZ. Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 2007; 134:1161-9. [PMID: 17332535 DOI: 10.1242/dev.02800] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specification of polar, main-body and stalk follicle cells in the germarium of the Drosophila ovary plays a key role in the formation of the egg chamber and polarisation of its anterior-posterior axis. High levels of Notch pathway activation, resulting from a germline Delta ligand signal, induce polar cells. Here we show that low Notch activation levels, originating from Delta expressed in the polar follicle cells, are required for stalk formation. The metalloprotease Kuzbanian-like, which cleaves and inactivates Delta, reduces the level of Delta signaling between follicle cells, thereby limiting the size of the stalk. We find that Notch activation is required in a continuous fashion to maintain the polar and stalk cell fates. We further demonstrate that mutual antagonism between the Notch and JAK/STAT signaling pathways provides a crucial facet of follicle cell patterning. Notch signaling in polar and main-body follicle cells inhibits JAK/STAT signaling by preventing STAT nuclear translocation, thereby restricting the influence of this pathway to stalk cells. Conversely, signaling by JAK/STAT reduces Notch signaling in the stalk. Thus, variations in the levels of Notch pathway activation, coupled with a continuous balance between the Notch and JAK/STAT pathways, specify the identity of the different follicle cell types and help establish the polarity of the egg chamber.
Collapse
Affiliation(s)
- Efrat Assa-Kunik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
8
|
Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 2007; 19:166-75. [PMID: 17317139 DOI: 10.1016/j.ceb.2007.02.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/09/2007] [Indexed: 12/31/2022]
Abstract
The development of complex and diverse metazoan morphologies is coordinated by a surprisingly small number of evolutionarily conserved signaling mechanisms. These signals can act in parallel but often appear to function as an integrated hyper-network. The nodes defining this complex molecular circuitry are poorly understood, but the biological significance of pathway cross-talk is profound. The importance of such large-scale signal integration is exemplified by Notch and its ability to cross-talk with all the major pathways to influence cell differentiation, proliferation, survival and migration. The Notch pathway is, thus, a useful paradigm to illustrate the complexity of pathway cross-talk: its pervasiveness, context dependency, and importance in development and disease.
Collapse
Affiliation(s)
- Gregory D Hurlbut
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | | |
Collapse
|
9
|
Jordan KC, Schaeffer V, Fischer KA, Gray EE, Ruohola-Baker H. Notch signaling through tramtrack bypasses the mitosis promoting activity of the JNK pathway in the mitotic-to-endocycle transition of Drosophila follicle cells. BMC DEVELOPMENTAL BIOLOGY 2006; 6:16. [PMID: 16542414 PMCID: PMC1436016 DOI: 10.1186/1471-213x-6-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/16/2006] [Indexed: 12/30/2022]
Abstract
Background The follicle cells of the Drosophila egg chamber provide an excellent model in which to study modulation of the cell cycle. During mid-oogenesis, the follicle cells undergo a variation of the cell cycle, endocycle, in which the cells replicate their DNA, but do not go through mitosis. Previously, we showed that Notch signaling is required for the mitotic-to-endocycle transition, through downregulating String/Cdc25, and Dacapo/p21 and upregulating Fizzy-related/Cdh1. Results In this paper, we show that Notch signaling is modulated by Shaggy and temporally induced by the ligand Delta, at the mitotic-to-endocycle transition. In addition, a downstream target of Notch, tramtrack, acts at the mitotic-to-endocycle transition. We also demonstrate that the JNK pathway is required to promote mitosis prior to the transition, independent of the cell cycle components acted on by the Notch pathway. Conclusion This work reveals new insights into the regulation of Notch-dependent mitotic-to-endocycle switch.
Collapse
Affiliation(s)
- Katherine C Jordan
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Valerie Schaeffer
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Karin A Fischer
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E Gray
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Box 357350, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Sun J, Deng WM. Notch-dependent downregulation of the homeodomain gene cut is required for the mitotic cycle/endocycle switch and cell differentiation in Drosophila follicle cells. Development 2005; 132:4299-308. [PMID: 16141223 PMCID: PMC3891799 DOI: 10.1242/dev.02015] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During Drosophila mid-oogenesis, follicular epithelial cells switch from the mitotic cycle to the specialized endocycle in which the M phase is skipped. The switch, along with cell differentiation in follicle cells, is induced by Notch signaling. We show that the homeodomain gene cut functions as a linker between Notch and genes that are involved in cell-cycle progression. Cut was expressed in proliferating follicle cells but not in cells in the endocycle. Downregulation of Cut expression was controlled by the Notch pathway and was essential for follicle cells to differentiate and to enter the endocycle properly. cut-mutant follicle cells entered the endocycle and differentiated prematurely in a cell-autonomous manner. By contrast, prolonged expression of Cut caused defects in the mitotic cycle/endocycle switch. These cells continued to express an essential mitotic cyclin, Cyclin A, which is normally degraded by the Fizzy-related-APC/C ubiquitin proteosome system during the endocycle. Cut promoted Cyclin A expression by negatively regulating Fizzy-related. Our data suggest that Cut functions in regulating both cell differentiation and the cell cycle, and that downregulation of Cut by Notch contributes to the mitotic cycle/endocycle switch and cell differentiation in follicle cells.
Collapse
|