1
|
Jiahao M, Fan Z, Junsheng M. Influence of acidic metabolic environment on differentiation of stem cell-derived cardiomyocytes. Front Cardiovasc Med 2024; 11:1288710. [PMID: 38572303 PMCID: PMC10987843 DOI: 10.3389/fcvm.2024.1288710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-based myocardial regeneration is a frontier topic in the treatment of myocardial infarction. Manipulating the metabolic microenvironment of stem cells can influence their differentiation into cardiomyocytes, which have promising clinical applications. pH is an important indicator of the metabolic environment during cardiomyocyte development. And lactate, as one of the main acidic metabolites, is a major regulator of the acidic metabolic environment during early cardiomyocyte development. Here, we summarize the progress of research into the influence of pH value and lactate on cardiomyocyte survival and differentiation, as well as related mechanisms.
Collapse
Affiliation(s)
- Mao Jiahao
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Fan
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Mu Junsheng
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Ritchie HE, Moore NP, Webster WS. Editor’s Highlight: Ethylene Glycol Teratogenicity: A Role for Embryonic Acidosis? Toxicol Sci 2017; 161:421-430. [DOI: 10.1093/toxsci/kfx225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
3
|
Wu X, Qiao B, Liu Q, Zhang W. Upregulation of extracellular matrix metalloproteinase inducer promotes hypoxia-induced epithelial-mesenchymal transition in esophageal cancer. Mol Med Rep 2015; 12:7419-24. [PMID: 26458866 DOI: 10.3892/mmr.2015.4410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/17/2015] [Indexed: 01/12/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) exerts important roles in tumor progression, including angiogenesis, metastasis and therapy resistance. The epithelial‑mesenchymal transition (EMT), which is induced by hypoxia, is an important process in cancer metastasis. However, the association between hypoxia and EMMPRIN remains to be elucidated in esophageal cancer. The expression of EMMPRIN was determined by western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), and EMT markers were analyzed by western blotting, RT‑qPCR and immunofluoresence. The migration and invasion of cells was investigated by Transwell assay. The results indicated that the expression levels of EMMPRIN in esophageal cancer cells were markedly higher compared with those in normal esophageal cells. EMMPRIN was able to promote esophageal cancer cell migration and invasion under both hypoxic or normoxic conditions, as demonstrated by the migration and invasion assay. The expression levels of E‑cadherin were reduced, and those of snail family zinc finger 1, fibronectin, α‑smooth muscle actin and fibroblast secretory protein 1 increased in esophageal cancer cells following treatment with human recombinant EMMPRIN under hypoxic conditions. The mRNA expression levels of the EMT markers were similar to those of the protein expression levels. Furthermore, the results demonstrated that EMMPRIN was regulated by hypoxia‑inducible factor (HIF)‑1α. These data suggested that EMMPRIN promoted metastasis and the EMT in esophageal cancer cells by regulating HIF-1α.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Bin Qiao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qin Liu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Weiguo Zhang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
4
|
Robin E, Marcillac F, Raddatz E. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance. Am J Physiol Regul Integr Comp Physiol 2015; 308:R614-26. [PMID: 25632022 DOI: 10.1152/ajpregu.00423.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.
Collapse
Affiliation(s)
- Elodie Robin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and National Center for Scientific Research, Center for Molecular Biophysics, Orléans, France
| | - Fabrice Marcillac
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| | - Eric Raddatz
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| |
Collapse
|
5
|
Ellis-Hutchings RG, Moore NP, Marshall VA, Rasoulpour RJ, Carney EW. Disposition of glycolic acid into rat and rabbit embryos in vitro. Reprod Toxicol 2014; 46:46-55. [PMID: 24598581 DOI: 10.1016/j.reprotox.2014.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/23/2013] [Accepted: 02/22/2014] [Indexed: 11/25/2022]
Abstract
High dose gavage administration of ethylene glycol (EG) induces teratogenicity in rodents, but not in rabbits, resulting from saturation of intermediate EG metabolism and glycolic acid (GA) accumulation. In vivo, rat embryos sequester GA 2-4-fold higher than maternal blood, a phenomenon absent in rabbits and proposed not to occur in humans. This research explored the mechanisms of GA disposition into rat and rabbit conceptuses using whole embryo culture (WEC). Rat and rabbit embryos concentrated GA from the culture medium. In vitro to in vivo discordance in the rabbit plausibly stemmed from anatomical differences between these models. GA sequestration was attenuated at 4°C in both species. Rat embryos further demonstrated pH-dependence of GA sequestration and inhibition by D-lactic acid. These data suggest GA disposition into rat and rabbit embryos is energy- and pH-dependent, and carrier-mediated. Anatomical and maternal-to-conceptal pH gradient differences likely underlie the lack of enhanced GA disposition in non-rodent species.
Collapse
Affiliation(s)
- Robert G Ellis-Hutchings
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland 48674, USA.
| | - Nigel P Moore
- Toxicology and Environmental Research and Consulting, Dow Europe GmbH, Horgen, Switzerland
| | - Valerie A Marshall
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland 48674, USA
| | - Reza J Rasoulpour
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland 48674, USA
| | - Edward W Carney
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland 48674, USA
| |
Collapse
|
6
|
Zhou J, Song B, Duan X, Long Y, Lu J, Li Z, Zeng S, Zhan Q, Yuan M, Yang Q, Xia J. Association of BSG genetic polymorphisms with atherosclerotic cerebral infarction in the Han Chinese population. Int J Neurosci 2014; 124:734-40. [PMID: 24392813 DOI: 10.3109/00207454.2013.877461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.
Collapse
Affiliation(s)
- Juan Zhou
- Institute of Neurology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Y, Liang WB, Zhang LS, Gao LB, Chen TY, Wang YY, Zhang L. Expression of basigin in the early phase of acute myocardial ischemia in rats. Mol Med Rep 2013; 7:1494-500. [PMID: 23525302 DOI: 10.3892/mmr.2013.1387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
Basigin may be involved in cardiovascular disease. In our previous study, suppression subtractive hybridization results indicated that basigin may be associated with the early phase of acute myocardial ischemia (AMI) within 1 h. However, little is known regarding the expression of basigin in the early phase of AMI. The aim of the present study was to evaluate the temporal and spatial expression patterns of basigin mRNA and protein levels in AMI in rats. We constructed an AMI model in rats that received left anterior descending coronary artery ligation for 0, 15, 30, 60, 120 or 240 min. Real‑time quantitative PCR and in situ hybridization (ISH) were conducted to reveal the basigin mRNA levels in the early ischemic myocardium (EIM) and non‑ischemic myocardium (NIM). The expression levels of basigin protein were detected using western blot analysis and immunohistochemistry. The expression levels of basigin mRNA and protein significantly changed in the EIM as early as 30 min from ischemia, and the changes continued to be present throughout the ischemic period (P<0.05). The expression levels of basigin mRNA were significantly reduced, whilst those of the protein underwent a significant ~2-fold increase in the EIM. However, there were no significant differences in the basigin mRNA or protein expression levels from 0‑240 min in the NIM (P>0.05). We failed to detect a signal for basigin mRNA in the myocardium by ISH. Our findings indicated that basigin may be involved in acute myocardial ischemia following continual ischemia for >30 min.
Collapse
Affiliation(s)
- Yun Liu
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Edmands SD, Ladow E, Hall AC. Microarray analyses of genes regulated by isoflurane anesthesia in vivo: a novel approach to identifying potential preconditioning mechanisms. Anesth Analg 2013; 116:589-95. [PMID: 23400992 PMCID: PMC3582752 DOI: 10.1213/ane.0b013e31827b27b0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although general anesthetics are recognized for their potential to render patients unconscious during surgery, exposure can also lead to long-term outcomes of both cellular damage and protection. As regards the latter, delayed anesthetic preconditioning is an evolutionarily conserved physiological response that has the potential for protecting against ischemic injury in a number of tissues. Although it is known that delayed preconditioning requires de novo protein synthesis, knowledge of anesthetic-regulated genes is incomplete. In this study, we used the conserved nature of preconditioning to analyze differentially regulated genes in 3 different rat tissues. We hypothesized that by selecting those genes regulated in multiple tissues, we could develop a focused list of gene candidates potentially involved in delayed anesthetic preconditioning. METHODS Young adult male Sprague-Dawley rats were anesthetized with a 2% isoflurane/98% air mixture for 90 minutes. Immediately after anesthetic exposure, animals were euthanized and liver, kidney, and heart were removed and total RNA was isolated. Differential gene expression was determined using rat oligonucleotide gene arrays. Array data were analyzed to select for genes that were significantly regulated in multiple tissues. RESULTS All 3 tissues showed differentially regulated genes in response to a clinically relevant exposure to isoflurane. Analysis of coordinately regulated genes yielded a focused list of 34 potential gene candidates with a range of ontologies including regulation of inflammation, modulation of apoptosis, regulation of ion gradients, and maintenance of energy pathways. CONCLUSIONS Through using an analysis approach focusing on coordinately regulated genes, we were able to generate a focused list of interesting gene candidates with potential to enable future preconditioning studies.
Collapse
Affiliation(s)
- Scott D Edmands
- Neuroscience Program, Department of Biological Sciences, Smith College, Ford Hall 235a, Northampton, MA 01063, USA.
| | | | | |
Collapse
|
9
|
Chen Y, Gou X, Ke X, Cui H, Chen Z. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I. PLoS One 2012; 7:e40965. [PMID: 22844419 PMCID: PMC3402467 DOI: 10.1371/journal.pone.0040965] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In this study, we made a three-dimensional (3D) tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs) in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM) of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I) secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.
Collapse
Affiliation(s)
- Yanke Chen
- College of Medicine, Xi’an Jiaotong University, Xi’an, China
- Department of Cell Biology & Cell Engineering Research Center & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
- * E-mail: (ZC); (YC)
| | - Xingchun Gou
- Laboratory of Cell Biology & Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xia Ke
- Department of Cell Biology & Cell Engineering Research Center & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
| | - Hongyong Cui
- Department of Cell Biology & Cell Engineering Research Center & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
| | - Zhinan Chen
- Department of Cell Biology & Cell Engineering Research Center & State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
- * E-mail: (ZC); (YC)
| |
Collapse
|
10
|
Ke X, Fei F, Chen Y, Xu L, Zhang Z, Huang Q, Zhang H, Yang H, Chen Z, Xing J. Hypoxia upregulates CD147 through a combined effect of HIF-1α and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis 2012; 33:1598-607. [PMID: 22678117 DOI: 10.1093/carcin/bgs196] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypoxia is one of the most pervasive physiological stresses within tumors. Hypoxia signaling contributes to the aggressive tumor behaviors through promoting tumor cells to undergo the fundamental metabolism adaptation. A series of evidence indicates that this process is mainly mediated by hypoxia-inducible factor (HIF). However, key molecules involved in tumor hypoxia adaptation remain to be characterized. In this study, we investigated the functional role of CD147, a transmembrane glycoprotein highly overexpressed on the surface of tumor cells, in hypoxic microenvironment using in vitro and in vivo assays. Immunohistochemical staining showed that CD147 expression was upregulated in hypoxic region of epithelial solid tumor tissues. In addition, our data indicated that hypoxia induced the upregulation of CD147 expression at both mRNA and protein levels in epithelial carcinoma cells in a time- and dose-dependent manner. Moreover, we demonstrated that hypoxia-induced CD147 upregulation was mainly mediated by a combined effect of transcription factors HIF-1 and specificity protein 1 (Sp1) on the activation of CD147 promoter. We also explored the metabolic functions of hypoxia-induced CD147 and found that upregulated CD147 promoted glycolysis in both tumor cell lines and nude mice tumor xenograft model, partially through the functional cooperation with MCT-1 and MCT-4. Finally, we observed that CD147 promoted tumor growth, inhibited tumor cell apoptosis and enhanced their invasion ability under hypoxia. In conclusion, our findings reveal a novel mechanism of hypoxia adaptation mediated by CD147 in epithelial solid tumors and suggest that CD147 may be a promising therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Xia Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chadwick W, Boyle JP, Zhou Y, Wang L, Park SS, Martin B, Wang R, Becker KG, Wood WH, Zhang Y, Peers C, Maudsley S. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes. PLoS One 2011; 6:e21638. [PMID: 21738745 PMCID: PMC3124552 DOI: 10.1371/journal.pone.0021638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/04/2011] [Indexed: 01/28/2023] Open
Abstract
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.
Collapse
Affiliation(s)
- Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John P. Boyle
- Institute for Cardiovascular Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Yu Zhou
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - William H. Wood
- Gene Expression and Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chris Peers
- Institute for Cardiovascular Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, West Yorkshire, United Kingdom
- * E-mail: (SM); (CP)
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail: (SM); (CP)
| |
Collapse
|
12
|
Agrawal SM, Yong VW. The many faces of EMMPRIN - roles in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:213-9. [PMID: 20674741 DOI: 10.1016/j.bbadis.2010.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 07/07/2010] [Accepted: 07/26/2010] [Indexed: 11/28/2022]
Abstract
The central nervous system (CNS) is a relatively immune-privileged organ, wherein a well-instated barrier system (the blood-brain barrier) prevents the entry of blood cells into the brain with the exception of regular immune surveillance cells. Despite this tight security immune cells are successful in entering the CNS tissue where they result in states of neuroinflammation, tissue damage and cell death. Various components of the blood-brain barrier and infiltrating cells have been examined to better understand how blood cells are able to breach this secure barrier. Proteases, specifically matrix metalloproteinases (MMP), have been found to be the common culprits in most diseases involving neuroinflammation. MMPs secreted by infiltrating cells act specifically upon targets on various components of the blood-brain barrier, compromising this barrier and allowing cell infiltration into the CNS. Extracellular matrix metalloproteinase inducer (EMMPRIN) is an upstream inducer of several MMPs and is suggested to be the master regulator of MMP production in disease states such as cancer metastasis. EMMPRIN in the context of the CNS is still relatively understudied. In this review we will introduce EMMPRIN, discuss its ligands and roles in non-CNS conditions that can help implicate its involvement in CNS disorders, showcase its expression within the CNS in healthy and disease conditions, elucidate its ligands and receptors, and briefly discuss the emerging roles it plays in various diseases of the CNS involving inflammation.
Collapse
Affiliation(s)
- Smriti M Agrawal
- Hotchkiss Brain Institute, Department of Clnical Neurosciences and Oncology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
13
|
Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 2007; 83:283-95. [PMID: 17945211 DOI: 10.1016/j.yexmp.2007.08.014] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer's disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to upregulation of CD147 expression and tumor progression is introduced.
Collapse
Affiliation(s)
- Kathryn T Iacono
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, 252 John Morgan Building, 36th & Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | | | | | | |
Collapse
|
14
|
Xie XJ, Wang JA, Cao J, Zhang X. Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin 2006; 27:1153-8. [PMID: 16923335 DOI: 10.1111/j.1745-7254.2006.00436.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To explore whether bone marrow mesenchymal stem cells (MSC) can differentiate into myocardial-like cells induced by myocardial medium, especially the hypoxia/reoxygenation-conditioned medium of cardiomyocytes. METHODS Myocardial cells obtained from neonatal Sprague-Dawley rat ventricles were isolated and cultured in vitro and a hypoxia reoxygenation model was established. The MSC isolated from adult Sprague-Dawley rats were purified and then incubated with 3 different mediums: medium A- the conditioned medium of normal cardiomyocytes; medium B - the conditioned medium of cardiomyocytes after hypoxia reoxygenation; and the control medium - ordinary medium. The expressions of the cardiac myosin heavy chain (MHC), troponin T (TnT) and connexin 43 were investigated in the MSC after 24 h, 48 h and 72 h cultivation, respectively. RESULTS The MSC expressed MHC and TnT when incubated with the conditioned medium of cardiomyocytes after hypoxia reoxygenation, but did not express connexin 43. None of MHC, TnT and connexin 43 was detected in the MSC incubated with the conditioned medium of normal cardiomyocytes. CONCLUSION The results indicate for the first time that myocardial medium for hypoxic preconditioning can induce MSC differentiation into myocardial-like cells.
Collapse
Affiliation(s)
- Xiao-jie Xie
- Division of Cardiology, the 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | |
Collapse
|