1
|
Dai Y, Peng Y, Lu Z, Mao T, Chen K, Lu X, Liu K, Zhou X, Hu W, Wang H. Prenatal prednisone exposure impacts liver development and function in fetal mice and its characteristics. Toxicol Sci 2024; 199:63-80. [PMID: 38439560 DOI: 10.1093/toxsci/kfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid β-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
2
|
Liu K, Wang G, Li L, Chen G, Gong X, Zhang Q, Wang H. GR-C/EBPα-IGF1 axis mediated azithromycin-induced liver developmental toxicity in fetal mice. Biochem Pharmacol 2020; 180:114130. [PMID: 32615080 DOI: 10.1016/j.bcp.2020.114130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023]
Abstract
Azithromycin is considered an effective drug to treat the perinatal mycoplasma infection. However, there is a lack of studies on developmental toxicity of azithromycin. In this study, we observed the developmental toxicity of fetal liver induced by prenatal azithromycin exposure (PAE) in mice and explored the potential mechanism. Pregnant Kunming mice were intraperitoneally injected with azithromycin (37.5 and 150 mg/kg·d) from gestational day (GD) 9 to 18. After PAE, the bodyweight gain rates of pregnant mice and the birthweights of the offspring were decreased, and the liver morphology, development indexes and metabolic function were all altered in different degree in the PAE fetuses. Meanwhile, PAE decreased the fetal serum insulin-like growth factor 1 (IGF1) levels and liver IGF1 signal pathway expression, accompanied by glucocorticoid receptor-CCAAT enhancer-binding protein α (GR-C/EBPα) signal enhancement. Furthermore, azithromycin disturbed hepatocyte differentiation, maturation and metabolic function via upregulating GR-C/EBPα signal and reducing the expression and secretion levels of IGF1 in HepG2 cells. These changes could be reversed by GR siRNA or exogenous IGF1. These results indicated that PAE could cause fetal liver developmental toxicity in mice, and one of the main mechanisms was that azithromycin activated the GR-C/EBPα signal, inhibited the IGF1 signal pathway, and then disturbed the hepatic proliferation, apoptosis, differentiation, and glycose and lipid metabolism.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guihua Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
3
|
Wang G, He B, Hu W, Liu K, Gong X, Kou H, Guo Y, Wang H. Low-expressional IGF1 mediated methimazole-induced liver developmental toxicity in fetal mice. Toxicology 2018; 408:70-79. [PMID: 29990518 DOI: 10.1016/j.tox.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
Abstract
Anti-thyroid drugs (ATDs) therapy is necessary for pregnant women with hyperthyroidism. However, there is a lack of studies on developmental toxicity of ATDs. In this study, we observed the developmental toxicity of fetal liver induced by prenatal methimazole exposure (PME) in mice, and explored the potential mechanism. Pregnant Kunming mice were administered intragastrically with 4.5 or 18 mg/kg·d methimazole from gestational day (GD) 9∼18. After PME, the birth weights of the offspring mice were decreased, and the liver morphology, development indexes and metabolic function were all altered in different degree in the PME fetuses. Meanwhile, PME decreased the levels of serum and hepatic insulin-like growth factor 1 (IGF1), and reduced the gene expression of IGF1 downstream signaling pathway. Furthermore, the protein levels of phosphorylated-extracellular regulated protein kinases (p-ERK) and serine-threonine protein kinase (p-Akt) were also reduced. Furthermore, methimazole disturb hepatocyte differentiation, maturation and metabolic function through suppressing IGF1 signaling pathway in HepG2 cells. These results demonstrated that PME could induce fetal liver developmental toxicity, and the underlying mechanism was related to low-expression of hepatic IGF1 caused by methimazole, which mediated abnormal liver morphology and metabolic function.
Collapse
Affiliation(s)
- Guihua Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Bo He
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China
| | - Hao Kou
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical College of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
4
|
Luo T, Fu J, Xu A, Su B, Ren Y, Li N, Zhu J, Zhao X, Dai R, Cao J, Wang B, Qin W, Jiang J, Li J, Wu M, Feng G, Chen Y, Wang H. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 2016; 12:1355-71. [PMID: 25905985 PMCID: PMC4968225 DOI: 10.1080/15548627.2015.1034405] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023] Open
Abstract
Although autophagy is most critical for survival of cancer cells, especially in fast-growing tumors, the mechanism remains to be fully characterized. Herein we report that PSMD10/gankyrin promotes autophagy in hepatocellular carcinoma (HCC) in response to starvation or stress through 2 complementary routes. PSMD10 was physically associated with ATG7 in the cytoplasm, and this association was enhanced by initial nutrient deprivation. Subsequently, PSMD10 translocated into the nucleus and bound cooperatively with nuclear HSF1 (heat shock transcription factor 1) onto the ATG7 promoter, upregulated ATG7 expression in the advanced stage of starvation. Intriguingly, the type of PSMD10-mediated autophagy was independent of the proteasome system, although PSMD10 has been believed to be an indispensable chaperone for assembly of the 26S proteasome. A significant correlation between PSMD10 expression and ATG7 levels was detected in human HCC biopsies, and the combination of these 2 parameters is a powerful predictor of poor prognosis. The median survival of sorafenib-treated HCC patients with high expression of PSMD10 was much shorter than those with low expression of PSMD10. Furthermore, PSMD10 augmented autophagic flux to resist sorafenib or conventional chemotherapy, and inhibition of autophagy suppressed PSMD10-mediated resistance. We conclude that these results present a novel mechanism involving modulation of ATG7 by PSMD10 in sustaining autophagy, promoting HCC cell survival against starvation or chemotherapy. Targeting of PSMD10 might therefore be an attractive strategy in HCC treatment by suppressing autophagy and inducing HCC cell sensitivity to drugs.
Collapse
Affiliation(s)
- Tao Luo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - An Xu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Bo Su
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Yibing Ren
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Ning Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Junjie Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Xiaofang Zhao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Rongyang Dai
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Jie Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Bibo Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Wenhao Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Jinhua Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Juan Li
- Department of Nutrition and Endocrinology, Changhai Hospital, Shanghai, China
| | - Mengchao Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Gensheng Feng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Jung IH, Choi JHK, Chung YY, Lim GL, Park YN, Park SW. Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis. Neoplasia 2016; 17:586-97. [PMID: 26297436 PMCID: PMC4547407 DOI: 10.1016/j.neo.2015.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/04/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is an important process leading to tumorigenesis. Therefore, targeting and controlling inflammation can be a promising cancer therapy. Inflammation is often caused by a variety of inflammatory cytokine such as the interleukin (IL)-6, a pleiotrophic cytokine known to be involved in the tumorigenesis. In this study, an in vivo hepatic tumorigenesis model of zebrafish was generated to demonstrate a direct consequence of the human IL6 expression causing hepatocarcinogenesis. To do this, an elevated expression of the hIL6 gene was established to specifically target the zebrafish hepatocytes by transgenesis. Interestingly, the elevated hIL6 expression caused the chronic inflammation which results in a massive infiltration of inflammatory cells. This eventually resulted in the generation of various dysplastic lesions such as clear cell, small cell, and large cell changes, and also eosinophilic and basophilic foci of hepatocellular alteration. Hepatocellular carcinoma was then developed in the transgenic zebrafish. Molecular characterization revealed upregulation of the downstream components involved in the IL6-mediated signaling pathways, especially PI3K/Akt and JAK/STAT3 pathways. Further investigation indicated that PI3K was the most reactive to the infiltrated inflammatory cells and dysplasia with large cell change, whereas STAT3 was heavily activated in the region with dysplastic foci, suggesting that the JAK/STAT3 pathway was mainly implicated in the hepatic tumorigenesis in the current model. Our present study provides an in vivo evidence of the relationship between chronic inflammation and tumorigenesis and reinforces the pivotal role of IL6 in the inflammation-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- In Hye Jung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yong-Yoon Chung
- Research Institute of SMT Bio, SMT Bio Co., Ltd. Seoul, Korea
| | - Ga-Lam Lim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
7
|
DeBenedictis B, Guan H, Yang K. Prenatal Exposure to Bisphenol A Disrupts Mouse Fetal Liver Maturation in a Sex-Specific Manner. J Cell Biochem 2015; 117:344-50. [PMID: 26146954 DOI: 10.1002/jcb.25276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is one of the most prevalent endocrine disrupting chemicals in the environment. Developmental exposure to BPA is known to be associated with liver dysfunction and diseases, such as hepatic steatosis, liver tumors, metabolic syndrome, and altered hepatic gene expression, and DNA methylation profiles. However, the effects of BPA on rodent liver development are unknown. The present study was undertaken to address this important question using the mouse as an experimental model. Pregnant mice were exposed to BPA via diet from embryonic day 7.5 (E7.5) to E18.5. At E18.5, fetal livers were collected, and analyzed for changes in the expression of key hepatocyte maturation markers. We found the following significant alterations in BPA-exposed female but not male fetal livers: (a) levels of the mature hepatocyte markers, albumin and glycogen synthase proteins, were decreased (-65% and -40%, respectively); (b) levels of the immature hepatocyte marker, α-fetoprotein, were increased (+43%); (c) the level of C/EBP-α protein, the master transcription factor essential for hepatocyte maturation, was down-regulated (-50%); and (d) the level of PCNA protein (marker of proliferation) was elevated (+40%), while that of caspase-3 protein and activity (markers of apoptosis) was reduced (-40% and -55%, respectively), suggestive of a perturbed balance between cell proliferation and apoptosis in BPA-exposed female fetuses. Taken together, these findings demonstrate that prenatal exposure to BPA disrupts the mouse fetal liver maturation in a sex-specific manner, and suggest a fetal origin for BPA-induced hepatic dysfunction and diseases.
Collapse
Affiliation(s)
- Bianca DeBenedictis
- Departments of Obstetrics and Gynaecology, Western University, London, Ontario, Canada, N6C 2V5.,Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6C 2V5.,Children's Health Research Institute, Western University, London, Ontario, Canada, N6C 2V5
| | - Haiyan Guan
- Departments of Obstetrics and Gynaecology, Western University, London, Ontario, Canada, N6C 2V5.,Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6C 2V5.,Children's Health Research Institute, Western University, London, Ontario, Canada, N6C 2V5
| | - Kaiping Yang
- Departments of Obstetrics and Gynaecology, Western University, London, Ontario, Canada, N6C 2V5.,Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6C 2V5.,Children's Health Research Institute, Western University, London, Ontario, Canada, N6C 2V5
| |
Collapse
|
8
|
Abstract
The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
9
|
Hsu CC, Pai WY, Lai CY, Lu MW, Her GM. Genetic characterization and in vivo image analysis of novel zebrafish Danio rerio pigment mutants. JOURNAL OF FISH BIOLOGY 2013; 82:1671-1683. [PMID: 23639161 DOI: 10.1111/jfb.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
This study reports the isolation and characterization of a new type of transparent zebrafish Danio rerio mutant called pinky (pk), which has been visually isolated from a spontaneous mutation in a D. rerio colony. The pk larvae possess complex mutations affecting pigmentation because of missing pigment cells or a dramatic reduction in the chromatophore number. The pk displays a totally colourless phenotype and adult body transplant with no other obvious external morphological abnormalities, except for a red retina. The molecular analysis results in several candidate genes, hps1, ap3m2 and rabggta, implicated in the Hermansky-Pudlak syndrome (HPS) genes associated with HPS in pk. To demonstrate its applications of deep-tissue imaging, this study examines green fluorescent protein alone or with other fluorescent proteins to investigate their capability for using multilabelling purposes in live adult pk. In this study, pk is particularly valuable for tissue cell labelling and internal organogenesis studies because of its optical clarity in the adult body.
Collapse
Affiliation(s)
- C C Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66, Sec. 1, Fongsing Rd, Tanzih Township, Taichung County 427, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW. Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1037-51. [PMID: 23416188 DOI: 10.1016/j.bbalip.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have diverse and complex cellular functions. Although relevant literature has reported that YY1 expression can induce the down-regulation of C/EBP homologous protein 10 (CHOP-10) and then allow the transactivation of certain transcription factors required for lipogenesis, similar properties of YY1 are poorly understood in animal model systems. In this study, we demonstrate hepatic lipid accumulation in YY1 transgenic zebrafish (GY). Oil-red staining cells were predominantly increased in the livers of both GY larvae and adults, indicating that YY1 functionally promoted lipid accumulation in GY livers. Molecular analysis revealed that YY1 over-expression contributed to the accumulation of hepatic triglycerides (TGs) by inhibiting CHOP-10 expression in the juvenile GY and 3 other fish cell lines; the decreased CHOP-10 expression then induced the transactivation of C/EBP-α and PPAR-γ expression. CHOP-10 morpholino (MO)-injected and rosiglitazone-treated G-liver larvae showed liver steatosis by transactivating PPAR-γ. PPAR-γ MO-injected, and GW9662- and astaxanthin-treated GY larvae showed no liver steatosis by inhibiting PPAR-γ. Moreover, a fatty acid (FA) accumulation and a TG decrease were found in the liver of aged GY, leading to the induction of FA-oxidizing systems that increased hepatic oxidative stress and liver damage. This study is the first to examine YY1 as a potential stimulator for GY liver steatosis and lipotoxicity.
Collapse
Affiliation(s)
- Guor Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
11
|
Cannabinoid receptor 1 promotes hepatic lipid accumulation and lipotoxicity through the induction of SREBP-1c expression in zebrafish. Transgenic Res 2013; 22:823-38. [PMID: 23315130 DOI: 10.1007/s11248-012-9685-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
The activated cannabinoid receptor 1 (CB1R) is exclusively responsible for food intake and weight gain and regulates several pathological features associated with obesity in mammals. However, the precise role of CB1R in non-mammalian model systems is poorly understood. To investigate the functions of CB1R in zebrafish liver, we conditionally expressed CB1R proteins using a liver-specific Tet(off) transgenic system. In this study, we found hepatic lipid accumulation in CB1R transgenic zebrafish (CB) without doxycycline treatment (-Dox) and a suppression of CB1R expression, resulting in the loss of lipid accumulation in the livers of CB fish that received doxycycline treatment (+Dox). Oil Red O (ORO)-stained hepatocytes were predominant in the liver buds of CB-Dox larvae, indicating that CB1R functionally promotes lipid accumulation during CB hepatogenesis. More than 73 % of CB-Dox adults showed increased lipid content, which leads, in turn, to steatosis. Liver histology and ORO staining of CB-Dox hepatocytes also indicated the accumulation of fatty droplets in the CB liver samples, consistent with the specific pathological features of liver steatosis or steatohepatitis. We also found that hepatic CB1R overexpression accompanies the stimulation of the lipogenic transcription factor SREBP-1c and its target enzymes, acetyl coenzyme-A carboxylase-1 (ACC1) and fatty acid synthase (FAS), and increases de novo fatty acid synthesis. This study is the first to report CB1R as a potential hepatic stimulator for zebrafish liver steatosis.
Collapse
|
12
|
Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:536-48. [PMID: 21722753 DOI: 10.1016/j.bbalip.2011.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
Gankyrin is a small ankyrin-repeat protein that previous research has confirmed to be overexpressed in hepatocellular carcinoma (HCC). Although relevant literature has reported on gankyrin functions in cellular proliferation and tumorigenesis, the exact role of gankyrin is poorly understood in animal model systems. This study analyzed hepatic lipid accumulation in gankyrin transgenic (GK) zebrafish. Bromodeoxyuridine (BrdU)-positive cells were predominantly increased in the liver bud of GK larvae, indicating that gankyrin functionally promoted cell proliferation at the larval stage in GK fish. However, over 90% of the viable GK adults showed an increased lipid content, leading in turn to liver steatosis. Liver histology and oil red O staining also indicated the accumulation of fatty droplets in GK fish, consistent with the specific pathological features of severe steatosis. Molecular analysis revealed that gankyrin overexpression induced hepatic steatosis and modulated the expression profiles of four hepatic microRNAs, miR-16, miR-27b, miR-122, and miR-126, and 22 genes involved in lipid metabolism. Moreover, significantly increased hepatic cell apoptosis resulted in liver damage in GK adults, leading to liver failure and death after approximately 10months. This study is the first to report gankyrin as a potential link between microRNAs and liver steatosis in zebrafish.
Collapse
|
13
|
Zhan H, Spitsbergen J, Qing W, Wu YL, Paul TA, Casey JW, Gong Z. Transgenic expression of walleye dermal sarcoma virus rv-cyclin gene in zebrafish and its suppressive effect on liver tumor development after carcinogen treatment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:640-9. [PMID: 20052603 PMCID: PMC4154541 DOI: 10.1007/s10126-009-9251-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/23/2009] [Indexed: 05/14/2023]
Abstract
A retrovirus homologue gene of cellular cyclin D₁, walleye dermal sarcoma virus rv-cyclin gene (orf A or rv-cyclin), was expressed in the livers of zebrafish under the control of liver fatty acid-binding protein (lfabp) promoter. To prevent possible fatality caused by overexpression of the oncogene, the GAL4/upstream activation sequence (GAL4/UAS) system was used to maintain the transgenic lines. Thus, both GAL4-activator [Tg(lfabp:GAL4)] and UAS-effector [Tg(UAS:rvcyclin)] lines were generated, and the rv-cyclin gene was activated in the liver after crossing these two lines. Since no obvious neoplasia phenotypes were observed in the double-transgenic line, cancer susceptibility of the transgenic fish expressing rv-cyclin was tested by carcinogen treatment. Unexpectedly, transgenic fish expressing rv-cyclin gene (rvcyclin+) were more resistant to the carcinogen than siblings not expressing this gene (rvcyclin-). Lower incidences of multiple and malignant liver tumors were observed in rvcyclin+ than in rvcyclin- fish, and the liver tumors in the rvcyclin+ group appeared later and were less malignant. These results suggest that expression of rv-cyclin protects the fish liver from carcinogen damage and delays onset of malignancy. These findings indicate that transgenic fish models are powerful systems for investigating mechanisms of inhibition and regression of liver tumors.
Collapse
MESH Headings
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/metabolism
- Adenoma, Liver Cell/pathology
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Epsilonretrovirus/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genes, Viral
- Liver/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Huiqing Zhan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jan Spitsbergen
- Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Wei Qing
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Lian Wu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Thomas A. Paul
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - James W. Casey
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- Corresponding author. Dr. Zhiyuan Gong, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Tel.: +65 65162860, Fax: +65 67792486,
| |
Collapse
|
14
|
Shieh YS, Chang YS, Hong JR, Chen LJ, Jou LK, Hsu CC, Her GM. Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:721-30. [PMID: 20416398 DOI: 10.1016/j.bbalip.2010.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/25/2010] [Accepted: 04/12/2010] [Indexed: 02/06/2023]
Abstract
The pathogenesis of fatty liver disease remains largely unknown. Here, we assessed the importance of hepatic fat accumulation on the progression of hepatitis in zebrafish by liver specific expression of Hepatitis B virus X protein (HBx). Transgenic zebrafish lines, GBXs, which selectively express the GBx transgene (GFP-fused HBx gene) in liver, were established. GBX Liver phenotypes were evaluated by histopathology and molecular analysis of fatty acid (FA) metabolism-related genes expression. Most GBXs (66-81%) displayed obvious emaciation starting at 4 months old. Over 99% of the emaciated GBXs developed hepatic steatosis or steatohepatitis, which in turn led to liver hypoplasia. The liver histology of GBXs displayed steatosis, lobular inflammation, and balloon degeneration, similar to non-alcoholic steatohepatitis (NASH). Oil red O stain detected the accumulation of fatty droplets in GBXs. RT-PCR and Q-rt-PCR analysis revealed that GBx induced hepatic steatosis had significant increases in the expression of lipogenic genes, C/EBP-alpha, SREBP1, ChREBP and PPAR-gamma, which then activate key enzymes of the de novo FA synthesis, ACC1, FAS, SCD1, AGAPT, PAP and DGAT2. In addition, the steatohepatitic GBX liver progressed to liver degeneration and exhibited significant differential gene expression in apoptosis and stress. The GBX models exhibited both the genetic and functional factors involved in lipid accumulation and steatosis-associated liver injury. In addition, GBXs with transmissible NASH-like phenotypes provide a promising model for studying liver disease.
Collapse
Affiliation(s)
- Yun-Sheng Shieh
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Krumschnabel G, Podrabsky JE. Fish as model systems for the study of vertebrate apoptosis. Apoptosis 2008; 14:1-21. [PMID: 19082731 DOI: 10.1007/s10495-008-0281-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/17/2008] [Indexed: 01/18/2023]
Abstract
Apoptosis is a process of pivotal importance for multi-cellular organisms and due to its implication in the development of cancer and degenerative disease it is intensively studied in humans and mammalian model systems. Invertebrate models of apoptosis have been well-studied, especially in C. elegans and D. melanogaster, but as these are evolutionarily distant from mammals the relevance of findings for human research is sometimes limited. Presently, a non-mammalian vertebrate model for studying apoptosis is missing. However, in the past few years an increasing number of studies on cell death in fish have been published and thus new model systems may emerge. This review aims at highlighting the most important of these findings, showing similarities and dissimilarities between fish and mammals, and will suggest topics for future research. In addition, the outstanding usefulness of fish as research models will be pointed out, hoping to spark future research on this exciting, often underrated group of vertebrates.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | |
Collapse
|
16
|
Chen LJ, Hsu CC, Hong JR, Jou LK, Tseng HC, Wu JL, Liou YC, Her GM. Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish. Dev Dyn 2008; 237:1070-81. [PMID: 18297734 DOI: 10.1002/dvdy.21477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumorigenesis requires inactivation of the p53 tumor suppressor pathway, likely involving the negative regulator Mdm2 protein. To analyze the possible roles of Mdm2 in oncogenesis and other functions during zebrafish hepatogenesis, we generated transgenic zebrafish by liver-specific Mdm2 over-expression utilizing a fusion between genes encoding GFP and mdm2, GFP::Mdm2. Over-expression of GFP::Mdm2 in the zebrafish liver did not interrupt normal liver development in the larval stages but approximately 30% of the adult fish raised from the same larvae displayed obvious growth retardation at 16 weeks of age. Most growth-retarded adults displayed liver atrophy, contraction, or hypoplasia, which proved lethal within 4 to 8 months. Histologically, over-expression of GFP::Mdm2 in Gmdm2-liver leading to liver degeneration may in some way have been due to an increased cell apoptosis accompanied by a slightly interrupted cell cycle or hepatocyte proliferation. Liver degeneration or other transgenic phenotypes were not associated with liver cancer; however, liver-degenerated phenotypes could be passed to wild-type zebrafish. In this study, we generated transgenic zebrafish lines with a "fragile liver." The "fragile liver" zebrafish can provide a model for molecular pathology of liver diseases and for screening small molecules that affect mdm2-related pathways.
Collapse
Affiliation(s)
- Li-Je Chen
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schlueter PJ, Sang X, Duan C, Wood AW. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev Biol 2007; 305:377-87. [PMID: 17362906 PMCID: PMC1964797 DOI: 10.1016/j.ydbio.2007.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways.
Collapse
Affiliation(s)
- Peter J. Schlueter
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xianpeng Sang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, Tel: 617-726-0654, Fax: 617-724-9935
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Antony W. Wood
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, Tel: 617-726-0654, Fax: 617-724-9935
- Author to whom correspondence should be addressed ()
| |
Collapse
|
18
|
Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ. Regulation of Smooth Muscle Cell Proliferation by β-Catenin/T-Cell Factor Signaling Involves Modulation of Cyclin D1 and p21 Expression. Circ Res 2006; 99:1329-37. [PMID: 17122440 DOI: 10.1161/01.res.0000253533.65446.33] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously observed that stimulation of vascular smooth muscle cell (VSMC) proliferation with growth factors is associated with dismantling of cadherin junctions and nuclear translocation of β-catenin. In this study we demonstrate directly that growth factors stimulate β-catenin/T-cell factor (TCF) signaling in primary VSMCs. To determine whether β-catenin/TCF signaling regulates VSMC proliferation via modulation of the β-catenin/TCF responsive cell cycle genes, cyclin D1 and p21, we inhibited β-catenin/TCF signaling by adenoviral-mediated over-expression of N-Cadherin, ICAT (an endogenous inhibitor of β-catenin/TCF signaling), or a dominant negative (dn) mutant of TCF-4. N-cadherin, ICAT or dnTCF-4 over-expression significantly reduced proliferation of isolated human VSMCs by approximately 55%, 80%, and 45% respectively. Similar effects were observed in human saphenous vein medial segments where proliferation was reduced by approximately 55%. Transfection of dnTCF-4 in the ISS10 human VSMC line significantly lowered TCF and cyclin D1 reporter activity but significantly elevated p21 reporter activity, indicating regulation of these genes by β-catenin/TCF signaling. In support of this, over-expression of N-cadherin, ICAT or dnTCF-4 in isolated human VSMCs significantly lowered levels of cyclin D1 mRNA and protein levels. In contrast, over-expression of N-Cadherin, ICAT or dnTCF4 significantly elevated p21 mRNA and protein levels. In summary, we have demonstrated that increasing N-cadherin and inhibiting β-catenin/TCF signaling reduces VSMC proliferation, decreases the expression of cyclin D1 and increases levels of the cell cycle inhibitor, p21. We therefore suggest that the N-cadherin and β-catenin/TCF signaling pathway is a key modulator of VSMC proliferation via regulation of these 2 β-catenin/TCF responsive genes.
Collapse
Affiliation(s)
- Helen Quasnichka
- Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Upper Maudlin St Bristol, UK
| | | | | | | | | | | |
Collapse
|
19
|
Kratz E, Eimon PM, Mukhyala K, Stern H, Zha J, Strasser A, Hart R, Ashkenazi A. Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ 2006; 13:1631-40. [PMID: 16888646 DOI: 10.1038/sj.cdd.4402016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Members of the Bcl-2 protein family control the intrinsic apoptosis pathway. To evaluate the importance of this family in vertebrate development, we investigated it in the zebrafish (Danio rerio). We found that the zebrafish genome encodes structural and functional homologs of most mammalian Bcl-2 family members, including multi-Bcl-2-homology (BH) domain proteins and BH3-only proteins. Apoptosis induction by gamma-irradiation required zBax1 and zPuma, and could be prevented by overexpression of homologs of prosurvival Bcl-2 family members. Surprisingly, zebrafish Bax2 (zBax2) was homologous to mammalian Bax by sequence and synteny, yet demonstrated functional conservation with human Bak. Morpholino knockdown of both zMcl-1a and zMcl-1b revealed their critical role in early embryonic zebrafish development, and in the modulation of apoptosis activation through the extrinsic pathway. These data indicate substantial functional similarity between zebrafish and mammalian Bcl-2 family members, and establish the zebrafish as a relevant model for studying the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- E Kratz
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|