1
|
Xiang J, Shen X, Zhang Y, Zhu Q, Yin H, Han S. MiR-223 inhibits proliferation and steroid hormone synthesis of ovarian granulosa cell via the AKT signaling pathway by targeting CRIM1 in chicken. Poult Sci 2024; 103:103910. [PMID: 38905756 PMCID: PMC11246046 DOI: 10.1016/j.psj.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024] Open
Abstract
Within the poultry industry, hens' reproductive performance is of great economic significance. The development and growth of follicles is a key aspect of hen egg production, and ovarian follicle growth and development are closely associated with granulosa cells (GCs) proliferation and the synthesis of steroid hormones. It has been confirmed by numerous studies that microRNAs (miRNAs) play important roles in the steroid hormone synthesis and proliferation of GCs. In this study, we examined the main miRNAs influencing hens' ability to reproduce, identified the miR-223 that is mainly expressed in atretic follicles based on sequencing, and investigated its role in GCs. Then, we used miR-223 mimic and inhibitor to knockdown or overexpress miR-223 expression. The result showed that miR-223 significantly inhibits both the steroid hormone synthesis and the proliferation of GCs. Subsequently, the results of the dual luciferase reporter experiment and bioinformatics prediction demonstrated that cysteine rich transmembrane BMP regulator 1 (CRIM1) was a downstream target gene of miR-223, and overexpression of miR-223 prevented CRIM1 expression. The function of CRIM1 was further investigated, and we observed a significant reduction in the synthesis of steroid hormones and the proliferation of GCs after transfection with CRIM1 siRNA. The opposite function of miR-223 was observed for CRIM1 in our study. Additionally, we demonstrated the involvement of the miR-223/CRIM1 axis in GCs through modulation of the AKT signaling pathway. Our data demonstrate the pivotal role of the miR-223 in the proliferation and steroid hormone synthesis of chicken GCs, which helps to explain how non-coding RNA (ncRNA) affects chicken reproductive function.
Collapse
Affiliation(s)
- Jialin Xiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Yokokawa T, Boucherat O, Martineau S, Lemay S, Breuils‐Bonnet S, Krishna V, Kalyana‐Sundaram S, Jeyaseelan J, Potus F, Bonnet S, Provencher S. Prognostic Significance of Proteomics-Discovered Circulating Inflammatory Biomarkers in Patients With Pulmonary Arterial Hypertension. J Am Heart Assoc 2024; 13:e032888. [PMID: 38874078 PMCID: PMC11255731 DOI: 10.1161/jaha.123.032888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) ultimately leads to right ventricular failure and premature death. The identification of circulating biomarkers with prognostic utility is considered a priority. As chronic inflammation is recognized as key pathogenic driver, we sought to identify inflammation-related circulating proteins that add incremental value to current risk stratification models for long-term survival in patients with PAH. METHODS AND RESULTS Plasma levels of 384 inflammatory proteins were measured with the proximity extension assay technology in patients with PAH (n=60) and controls with normal hemodynamics (n=28). Among these, 51 analytes were significantly overexpressed in the plasma of patients with PAH compared with controls. Cox proportional hazard analyses and C-statistics were performed to assess the prognostic value and the incremental prognostic value of differentially expressed proteins. A panel of 6 proteins (CRIM1 [cysteine rich transmembrane bone morphogenetic protein regulator 1], HGF [hepatocyte growth factor], FSTL3 [follistatin-like 3], PLAUR [plasminogen activator, urokinase receptor], CLSTN2 [calsyntenin 2], SPON1 [spondin 1]) were independently associated with death/lung transplantation at the time of PAH diagnosis after adjustment for the 2015 European Society of Cardiology/European Respiratory Society guidelines, the REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) 2.0 risk scores, and the refined 4-strata risk assessment. CRIM1, PLAUR, FSTL3, and SPON1 showed incremental prognostic value on top of the predictive models. As determined by Western blot, FSTL3 and SPON1 were significantly upregulated in the right ventricle of patients with PAH and animal models (monocrotaline-injected and pulmonary artery banding-subjected rats). CONCLUSIONS In addition to revealing new actors likely involved in cardiopulmonary remodeling in PAH, our screening identified promising circulating biomarkers to improve risk prediction in PAH, which should be externally confirmed.
Collapse
Affiliation(s)
- Tetsuro Yokokawa
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Olivier Boucherat
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
- Department of MedicineUniversité LavalQuébec CityQuébecCanada
| | - Sandra Martineau
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Sarah‐Eve Lemay
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Sandra Breuils‐Bonnet
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | | | | | | | - François Potus
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
- Department of MedicineUniversité LavalQuébec CityQuébecCanada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
- Department of MedicineUniversité LavalQuébec CityQuébecCanada
| | - Steeve Provencher
- Pulmonary Hypertension Research GroupCentre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
- Department of MedicineUniversité LavalQuébec CityQuébecCanada
| |
Collapse
|
3
|
Integrative Bioinformatics Analysis of mRNA Expression Profiles of Mice to Explore the Key Genes Involved in Crim1 Mutation-Induced Congenital Cataracts. Biochem Genet 2022:10.1007/s10528-022-10323-3. [PMID: 36586009 PMCID: PMC10372119 DOI: 10.1007/s10528-022-10323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
Crim1 has been implicated in cataracts in mice and is of great importance in the development of the eye in both humans and mice. Therefore, we aimed to clarify how Crim1 mutations affect lens development and the molecular mechanism of cataracts in mice through comprehensive bioinformatics analysis. The microarray chip was downloaded from the GEO database to obtain the gene expression profile data set. Differentially expressed genes (DEGs) were screened using the limma package. GO and KEGG analyses of DEGs were performed using the DAVID database. Then, we established the protein-protein interaction (PPI) network in Cytoscape. Next, we used MCODE to analyze the data. We obtained 750 DEGs in total, including 407 upregulated DEGs and 343 downregulated DEGs. GO analysis showed that the DEGs were mainly related to biological processes, such as apoptosis, cell translation and the immune system. KEGG analysis showed that the enriched functions and pathways were related to the processing and presentation of ribosomes, lysosomes, and antigens. We identified 18 HUB genes, among which four core genes, C1qa, C1qb, C1qc, and Cd74, were closely related to congenital cataracts induced by Crim1 mutation. This study reveals the molecular pathogenesis of congenital cataracts induced by Crim1, and this information is expected to facilitate clinical genetic testing, molecular diagnosis, prognosis, and individualized chemotherapy for congenital cataracts (CC).
Collapse
|
4
|
Sahni V, Itoh Y, Shnider SJ, Macklis JD. Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Rep 2021; 37:109842. [PMID: 34686337 PMCID: PMC8697027 DOI: 10.1016/j.celrep.2021.109842] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Shido R, Sumita Y, Hara M, Iwatake M, Narahara S, Umebayashi M, Miura KI, Kodama Y, Asahina I. Gene-activated matrix harboring a miR20a-expressing plasmid promotes rat cranial bone augmentation. Regen Biomater 2021; 8:rbaa060. [PMID: 33738113 PMCID: PMC7955717 DOI: 10.1093/rb/rbaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Gene-activated matrix (GAM) has a potential usefulness in bone engineering as an alternate strategy for the lasting release of osteogenic proteins but efficient methods to generate non-viral GAM remain to be established. In this study, we investigated whether an atelocollagen-based GAM containing naked-plasmid (p) DNAs encoding microRNA (miR) 20a, which may promote osteogenesis in vivo via multiple pathways associated with the osteogenic differentiation of mesenchymal stem/progenitor cells (MSCs), facilitates rat cranial bone augmentation. First, we confirmed the osteoblastic differentiation functions of generated pDNA encoding miR20a (pmiR20a) in vitro, and its transfection regulated the expression of several of target genes, such as Bambi1 and PPARγ, in rat bone marrow MSCs and induced the increased expression of BMP4. Then, when GAMs fabricated by mixing 100 μl of 2% bovine atelocollagen, 20 mg β-TCP granules and 0.5 mg (3.3 μg/μl) AcGFP plasmid-vectors encoding miR20a were transplanted to rat cranial bone surface, the promoted vertical bone augmentation was clearly recognized up to 8 weeks after transplantation, as were upregulation of VEGFs and BMP4 expressions at the early stages of transplantation. Thus, GAM-based miR delivery may provide an alternative non-viral approach by improving transgene efficacy via a small sequence that can regulate the multiple pathways.
Collapse
Affiliation(s)
- Rena Shido
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yoshinori Sumita
- Basic & Translational Research Center for Hard Tissue Disease, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masahito Hara
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mayumi Iwatake
- Basic & Translational Research Center for Hard Tissue Disease, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Shun Narahara
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mayumi Umebayashi
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.,Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dentistry, McGill University, 3640 University Street, M43, Montreal, Quebec H3A 2B2, Canada
| | - Kei-Ichiro Miura
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
6
|
Crim1 C140S mutant mice reveal the importance of cysteine 140 in the internal region 1 of CRIM1 for its physiological functions. Mamm Genome 2019; 30:329-338. [PMID: 31776724 DOI: 10.1007/s00335-019-09822-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Cysteine-rich transmembrane bone morphogenetic protein regulator 1 (CRIM1) is a type I transmembrane protein involved in the organogenesis of many tissues via its interactions with growth factors including BMP, TGF-β, and VEGF. In this study, we used whole-exome sequencing and linkage analysis to identify a novel Crim1 mutant allele generated by ENU mutagenesis in mice. This allele is a missense mutation that causes a cysteine-to-serine substitution at position 140, and is referred to as Crim1C140S. In addition to the previously reported phenotypes in Crim1 mutants, Crim1C140S homozygous mice exhibited several novel phenotypes, including dwarfism, enlarged seminal vesicles, and rectal prolapse. In vitro analyses showed that Crim1C140S mutation affected the formation of CRIM1 complexes and decreased the amount of the overexpressed CRIM1 proteins in the cell culture supernatants. Cys140 is located in the internal region 1 (IR1) of the N-terminal extracellular region of CRIM1 and resides outside any identified functional domains. Inference of the domain architecture suggested that the Crim1C140S mutation disturbs an intramolecular disulfide bond in IR1, leading to the protein instability and the functional defects of CRIM1. Crim1C140S highlights the functional importance of the IR1, and Crim1C140S mice should serve as a valuable model for investigating the functions of CRIM1 that are unidentified as yet.
Collapse
|
7
|
Weatherbee BAT, Barton JR, Siddam AD, Anand D, Lachke SA. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Exp Eye Res 2019; 188:107787. [PMID: 31479653 DOI: 10.1016/j.exer.2019.107787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Cataract-associated gene discovery in human and animal models have informed on key aspects of human lens development, homeostasis and pathology. Additionally, in vitro models such as the culture of permanent human lens epithelium-derived cell lines (LECs) have also been utilized to understand the molecular biology of lens cells. However, these resources remain uncharacterized, specifically regarding their global gene expression and suitability to model lens cell biology. Therefore, we sought to molecularly characterize gene expression in the human LEC, SRA01/04, which is commonly used in lens studies. We first performed short tandem repeat (STR) analysis and validated SRA01/04 LEC for its human origin, as recommended by the eye research community. Next, we used Illumina HumanHT-12 v3.0 Expression BeadChip arrays to gain insights into the global gene expression profile of SRA01/04. Comparative analysis of SRA01/04 microarray data was performed using other resources such as the lens expression database iSyTE (integrated Systems Tool for Eye gene discovery), the cataract gene database Cat-Map and the published lens literature. This analysis showed that SRA01/04 significantly expresses >40% of the top iSyTE lens-enriched genes (313 out of 749) across different developmental stages. Further, SRA01/04 also significantly expresses ~53% (168 out of 318) of cataract-associated genes in Cat-Map. We also performed comparative gene expression analysis between SRA01/04 cells and the previously validated mouse LEC 21EM15. To gain insight into whether SRA01/04 reflects epithelial or fiber cell characteristics, we compared its gene expression profile to previously reported differentially expressed genes in isolated mouse lens epithelial and fiber cells. This analysis suggests that SRA01/04 has reduced expression of several fiber cell-enriched genes. In agreement with these findings, cell culture analysis demonstrates that SRA01/04 has reduced potential to initiate spontaneous lentoid body formation compared to 21EM15 cells. Next, to independently validate SRA01/04 microarray gene expression, we subjected several candidate genes to RT-PCR and RT-qPCR assays. This analysis demonstrates that SRA01/04 supports expression of many key genes associated with lens development and cataract, including CRYAB, CRYBB2, CRYGS, DKK3, EPHA2, ETV5, GJA1, HSPB1, INPPL1, ITGB1, PAX6, PVRL3, SFRP1, SPARC, TDRD7, and VIM, among others, and therefore can be relevant for understanding the mechanistic basis of these factors. At the same time, SRA01/04 cells do not exhibit robust expression of several genes known to be important to lens biology and cataract such as ALDH1A1, COL4A6, CP, CRYBA4, FOXE3, HMX1, HSF4, MAF, MEIS1, PITX3, PRX, SIX3, and TRPM3, among many others. Therefore, the present study offers a rich transcript-level resource for case-by-case evaluation of the potential advantages and limitations of SRA01/04 cells prior to their use in downstream investigations. In sum, these data show that the human LEC, SRA01/04, exhibits lens epithelial cell-like character reflected in the expression of several lens-enriched and cataract-associated genes, and therefore can be considered as a useful in vitro resource when combined with in vivo studies to gain insight into specific aspects of human lens epithelial cells.
Collapse
Affiliation(s)
| | - Joshua R Barton
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
8
|
Yang L, He J, Xia G, Yang J, Tang Q, Yang Y, Deng J. Crim1 suppresses left ventricular hypertrophy. Biomed Rep 2019; 1:1-5. [PMID: 31258903 DOI: 10.3892/br.2019.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/02/2019] [Indexed: 11/06/2022] Open
Abstract
Left ventricular hypertrophy is a leading cause of heart failure and sudden death. Cysteine-rich transmembrane bone morphogenetic protein regulator 1 (Crim1) is expressed at a high level in the heart and has a regulatory role in heart development. The present study aimed to test the hypothesis that Crim1 can have an inhibitory function on ventricular hypertrophy. Rat primary ventricular myocytes were stretched to induce myocyte hypertrophy, and treated with telmisartan or infected with Crim1-expressing recombinant adenovirus (Ad-Crim1). Rat ventricular hypertrophy was induced by abdominal aortic coarctation (AAC), and treated either with telmisartan or myocardial injection of Ad-Crim1 or empty adenovirus vector. The results showed that the expression of Crim1 decreased in the hypertrophic ventricle. The inhibition of angiotensin receptor type 1 (AT1R) by telmisartan in vitro and in vivo significantly increased the expression of Crim1 in the left ventricle. The overexpression of Crim1 by infection with Ad-Crim1 significantly inhibited stretch-induced ventricular myocyte hypertrophy in vitro. The overexpression of Crim1 by gavage with AT1R inhibitor telmisartan or myocardial injection of Ad-Crim1 markedly suppressed AAC-induced left ventricular hypertrophy in vivo. These results suggest that Crim1 has a suppressive function on ventricular hypertrophy and provides a novel therapeutic target for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Long Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jionghong He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Guiling Xia
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jun Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qian Tang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yongyao Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jiusheng Deng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Maurizi E, Schiroli D, Atkinson SD, Mairs L, Courtney DG, O'Hagan B, McGilligan VE, Pagnamenta AT, Taylor JC, Vasquez JJD, Illanes-Velarde DE, Goldsmith D, Gouws P, Moore JE, Nesbit MA, Moore CBT. A novel role for CRIM1 in the corneal response to UV and pterygium development. Exp Eye Res 2018; 179:75-92. [PMID: 30365943 DOI: 10.1016/j.exer.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/21/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 A > C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Davide Schiroli
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Sarah D Atkinson
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC Building Altnagelvin Area Hospital, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | - Laura Mairs
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - David G Courtney
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Barry O'Hagan
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Victoria E McGilligan
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC Building Altnagelvin Area Hospital, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | | | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Dave Goldsmith
- Andean Medical Mission, 42, Sherwood Road, Bognor Regis, West Sussex, PO22 9DR, UK
| | - Pieter Gouws
- Conquest Hospital, The Ridge, St Leonards-on-Sea, East Sussex, TN37 7RD, UK
| | - Jonathan E Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - C B Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
10
|
Ogasawara N, Kudo T, Sato M, Kawasaki Y, Yonezawa S, Takahashi S, Miyagi Y, Natori Y, Sugiyama A. Reduction of Membrane Protein CRIM1 Decreases E-Cadherin and Increases Claudin-1 and MMPs, Enhancing the Migration and Invasion of Renal Carcinoma Cells. Biol Pharm Bull 2018; 41:604-611. [PMID: 29607933 DOI: 10.1248/bpb.b17-00990] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CRIM1 is a membrane protein that has been reported to be related to cell proliferation. CRIM1 is expressed in renal carcinoma cells, but its involvement in proliferation and malignant transformation remains unclear. We analyzed whether alterations in the characteristics of cancer cells are observed following knockdown of CRIM1. Decreased expression of CRIM1 did not affect proliferation or anchorage-independent growth. The results of wound healing and invasion assays showed that reduced expression of CRIM1 increased cells' migratory and invasive abilities. Expression analysis of factors involved in migration and invasion in CRIM1-knockdown cells revealed that expression of the cell adhesion factor E-cadherin declined and expression of claudin-1, which is upregulated in metastatic cancer cells, increased. In addition, increased expression of matrix metalloproteinase (MMP) 2 and MMP9, protease essential for cancer cell invasiveness, was observed. Furthermore, an increase in phosphorylated focal adhesion kinase (FAK), which increases cell migration, was observed. Increased expression of the E-cadherin transcription repressors Snail, Slug, and ZEB-1 were observed, and mRNA levels of E-cadherin were decreased. Therefore, expression of E-cadherin is thought to be decreased by both suppression of E-cadherin mRNA expression and promotion of degradation of the E-cadherin protein. In addition, expression of CRIM1 was decreased in renal cancer cells undergoing epithelial-mesenchymal transition (EMT) stimulated by tumor necrosis factor alpha (TNF-α). Thus, CRIM1 regulates the expression of several EMT-related factors and appears to play a role in suppressing migration and invasion through control of EMT.
Collapse
Affiliation(s)
- Nobutaka Ogasawara
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Tamami Kudo
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Masaki Sato
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Yasushi Kawasaki
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Sei Yonezawa
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Satoru Takahashi
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Science, Mukogawa Women's University
| | - Yohei Miyagi
- Division of Molecular Pathology and Genetics, Kanagawa Cancer Center Research Institute
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Akinori Sugiyama
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
11
|
Tam OH, Pennisi D, Wilkinson L, Little MH, Wazin F, Wan VL, Lovicu FJ. Crim1 is required for maintenance of the ocular lens epithelium. Exp Eye Res 2018; 170:58-66. [PMID: 29458060 DOI: 10.1016/j.exer.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
Abstract
The development and growth of the vertebrate ocular lens is dependent on the regulated proliferation of an anterior monolayer of epithelial cells, and their subsequent differentiation into elongate fiber cells. The growth factor rich ocular media that bathes the lens mediates these cellular processes, and their respective intracellular signaling pathways are in turn regulated to ensure that the proper lens architecture is maintained. Recent studies have proposed that Cysteine Rich Motor Neuron 1 (Crim1), a transmembrane protein involved in organogenesis of many tissues, might influence cell adhesion, polarity and proliferation in the lens by regulating integrin-signaling. Here, we characterise the lens and eyes of the Crim1KST264 mutant mice, and show that the loss of Crim1 function in the ocular tissues results in inappropriate differentiation of the lens epithelium into fiber cells. Furthermore, restoration of Crim1 levels in just the lens tissue of Crim1KST264 mice is sufficient to ameliorate most of the dysgenesis observed in the mutant animals. Based on our findings, we propose that tight regulation of Crim1 activity is required for maintenance of the lens epithelium, and its depletion leads to ectopic differentiation into fiber cells, dramatically altering lens structure and ultimately leading to microphthalmia and aphakia.
Collapse
Affiliation(s)
- Oliver H Tam
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - David Pennisi
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Fatima Wazin
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Victor L Wan
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
13
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
14
|
Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH. Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. J Pathol 2016; 238:665-76. [PMID: 26800422 DOI: 10.1002/path.4690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 11/11/2022]
Abstract
Congenital medullary dysplasia with obstructive nephropathy is a common congenital disorder observed in paediatric patients and represents the foremost cause of renal failure. However, the molecular processes regulating normal papillary outgrowth during the postnatal period are unclear. In this study, transcriptional profiling of the renal medulla across postnatal development revealed enrichment of non-canonical Wnt signalling, vascular development, and planar cell polarity genes, all of which may contribute to perinatal medulla/papilla maturation. These pathways were investigated in a model of papillary hypoplasia with functional obstruction, the Crim1(KST264/KST264) transgenic mouse. Postnatal elongation of the renal papilla via convergent extension was unaffected in the Crim1(KST264/KST264) hypoplastic renal papilla. In contrast, these mice displayed a disorganized papillary vascular network, tissue hypoxia, and elevated Vegfa expression. In addition, we demonstrate the involvement of accompanying systemic hypoxia arising from placental insufficiency, in appropriate papillary maturation. In conclusion, this study highlights the requirement for normal vascular development in collecting duct patterning, development of appropriate nephron architecture, and perinatal papillary maturation, such that disturbances contribute to obstructive nephropathy.
Collapse
Affiliation(s)
- Yu Leng Phua
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,School of Medicine, Department of Pediatrics, Division of Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | - Alexander Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep 2016; 6:19832. [PMID: 26821812 PMCID: PMC4731764 DOI: 10.1038/srep19832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development.
Collapse
|
16
|
Zhang Y, Fan J, Ho JWK, Hu T, Kneeland SC, Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, Lachke SA, Lang RA, John SWM, Maas RL. Crim1 regulates integrin signaling in murine lens development. Development 2015; 143:356-66. [PMID: 26681494 PMCID: PMC4725338 DOI: 10.1242/dev.125591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1glcr11, which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1null and Crim1cko, we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development. Summary: Crim1, a type I transmembrane protein, acts in lens epithelial cells where it colocalizes with and regulates the levels of active β1 integrin to control cell adhesion during mouse lens morphogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jieqing Fan
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua W K Ho
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Tommy Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Kneeland
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Qiongchao Xi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Sellarole
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Wilhelmine N de Vries
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Salil A Lachke
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Richard A Lang
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Simon W M John
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Richard L Maas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:45. [PMID: 26597593 PMCID: PMC4657325 DOI: 10.1186/s12861-015-0095-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Background The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. Results Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. Conclusions Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0095-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antony Athippozhy
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - Charless Fowlkes
- Donald Bren School of Information and Computer Science, University of California, Irvine, CA, 92602, USA.
| | - David M Gardiner
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - S Randal Voss
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
18
|
Narytnyk A, Gillinder K, Verdon B, Clewes O, Sieber-Blum M. Neural crest stem cell-specific deletion of the Pygopus2 gene modulates hair follicle development. Stem Cell Rev Rep 2015; 10:60-8. [PMID: 23955574 PMCID: PMC3907677 DOI: 10.1007/s12015-013-9466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We show that neural crest stem cells affect mouse hair follicle development. During embryogenesis hair follicle induction is regulated by complex reciprocal and functionally redundant signals between epidermis and dermis, which remain to be fully understood. Canonical Wnt signalling is a hallmark of neural crest cells and also a prerequisite for hair follicle induction prior to hair placode formation in the epidermis. As neural crest stem cells invade the epidermis during early embryonic development we aimed at determining whether neural crest cells affect hair follicle development. To attenuate, but not silence, canonical Wnt signalling specifically in neural crest cells, we analyzed Wnt1-cre(+/−)::Pygo2(−/−) mice in which the β-catenin co-activator gene, Pygopus 2 (Pygo2), is deleted specifically in neural crest cells. Both, hair density and hair thickness were reduced in mutant mice. Furthermore, hair development was delayed and the relative ratio of hair types was affected. There was a decrease in zig-zag hairs and an increase in awl hairs. Mouse neural crest stem cells expressed ectodysplasin, an essential effector in the formation of zig-zag hair. Taken together, our data support the novel notion that neural crest cells are involved in the earliest stages of hair follicle development.
Collapse
Affiliation(s)
- Alla Narytnyk
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | | | | | |
Collapse
|
19
|
Beleggia F, Li Y, Fan J, Elcioğlu NH, Toker E, Wieland T, Maumenee IH, Akarsu NA, Meitinger T, Strom TM, Lang R, Wollnik B. CRIM1 haploinsufficiency causes defects in eye development in human and mouse. Hum Mol Genet 2015; 24:2267-73. [PMID: 25561690 DOI: 10.1093/hmg/ddu744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Colobomatous macrophthalmia with microcornea syndrome (MACOM, Online Mendelian Inheritance in Man (OMIM) 602499) is an autosomal dominantly inherited malformation of the eye, which is characterized by microcornea with increased axial length, coloboma of the iris and of the optic disc, and severe myopia. We performed whole-exome sequencing (WES) in two affected individuals from the 2p23-p16-linked MACOM family, which includes 13 affected individuals in 3 generations. As no shared novel variation was found on the linked haplotype, we performed copy number variation (CNV) analysis by comparing the coverage of all exons in the WES data sets of the 2 patients with the coverage of 26 control exomes. We identified a heterozygous deletion predicted to span 22 kb including exons 14-17 of CRIM1 (cysteine-rich transmembrane bone morphogenetic protein (BMP) regulator 1). Quantitative PCR (qPCR) analysis confirmed the deletion, which was present in 11 affected individuals. Split-read analysis of WES data followed by breakpoint PCR and Sanger sequencing determined both breakpoints flanked by a 4-bp microhomology (CTTG). In the mouse, Crim1 is a growth-factor-binding protein with pleiotropic roles in the development of multiple organs, including the eye. To investigate the role of Crim1 during eye development in mice, we crossed a Crim1(flox) mouse line with the Ap2α-cre mouse line, which expresses Cre in the head surface ectoderm. Strikingly, we observed alterations of eye development in homozygous mice leading to severe anatomical and morphological changes overlapping with the anomalies observed in MACOM patients. Taken together, these findings identify CRIM1 as the causative gene for MACOM syndrome and emphasize the importance of CRIM1 in eye development.
Collapse
Affiliation(s)
- Filippo Beleggia
- Institute of Human Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yun Li
- Institute of Human Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jieqing Fan
- Division of Pediatric Ophthalmology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Ebru Toker
- Department of Ophtalmology, Marmara University Medical Faculty, Istanbul, Turkey
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Irene H Maumenee
- Illinois Eye and Ear Infirmary, Illinois University, College of Medicine at Chicago, Chicago, IL, USA
| | - Nurten A Akarsu
- Department of Medical Genetics, Gene Mapping Laboratory, Hacettepe University Medical Faculty, Ankara, Turkey and
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany, Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany, Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Richard Lang
- Division of Pediatric Ophthalmology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bernd Wollnik
- Institute of Human Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany,
| |
Collapse
|
20
|
Terrell AM, Anand D, Smith SF, Dang CA, Waters SM, Pathania M, Beebe DC, Lachke SA. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Exp Eye Res 2014; 131:42-55. [PMID: 25530357 DOI: 10.1016/j.exer.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 01/10/2023]
Abstract
The discovery of cytosolic RNA granule (RG) component proteins associated with human cataract has initiated investigations on post-transcriptional mechanisms of gene expression control in the lens. Application of established mouse lens epithelial cell lines (LECs) can provide rapid insights on RG function in lens cells, especially because mouse mutants in several RG components are not available. However, although these LECs represent potential reagents for such analyses, they are uncharacterized for lens gene expression or RG formation. Therefore, a detailed molecular and cellular characterization of three permanent mouse LECs 17EM15, 21EM15 and αTN4 is performed in this study. Comparative analysis between microarray gene expression datasets on LEC 21EM15 and iSyTE lens tissue demonstrates that 30% of top 200 iSyTE identified lens-enriched genes are expressed in these cells. Majority of these candidates are independently validated to either have lens expression, function or linkage to cataract. Moreover, analysis of microarray data with genes described in Cat-Map, an online database of cataract associated genes and loci, demonstrates that 131 genes linked to cataract loci are expressed in 21EM15 cells. Furthermore, gene expression in LECs is compared to isolated lens epithelium or fiber cells by qRT-PCR and by comparative analyses with publically available epithelium or fiber-specific microarray and RNA-seq (sequencing) datasets. Expression of select candidate genes was validated by regular and real-time quantitative RT-PCR. Expression of lens epithelium-enriched genes Foxe3, Pax6, Anxa4 and Mcm4 is up-regulated in LEC lines, compared to isolated lens fiber cells. Moreover, similar to isolated lens epithelium, all three LECs exhibit down-regulation of fiber cell-expressed genes Crybb1, Mip and Prox1 when compared to fiber cells. These data indicate that the LEC lines exhibit greater similarity to lens epithelium than to fiber cells. Compared to non-lens cell line NIH3T3, LECs exhibit significantly enriched expression of transcription factors with important function in the lens, namely Pax6, Foxe3 and Prox1. In addition to these genes, all three LECs also express key lens- and cataract-associated genes, namely Dkk3, Epha2, Hsf4, Jag1, Mab21l1, Meis1, Pknox1, Pou2f1, Sfrp1, Sparc, Tdrd7 and Trpm3. Additionally, 21EM15 microarrays indicate expression of Chmp4b, Cryab and Tcfap2a among others important genes. Immunostaining with makers for Processing bodies (P-bodies) and Stress granules (SGs) demonstrates that these classes of RGs are robustly expressed in all three LECs. Moreover, under conditions of stress, 17EM15 and αTN4 exhibit significantly higher numbers of P-bodies and SGs compared to NIH3T3 cells. In sum, these data indicate that mouse LECs 21EM15, 17EM15 and αTN4 express key lens or cataract genes, are similar to lens epithelium than fiber cells, and exhibit high levels of P-bodies and SGs, indicating their suitability for investigating gene expression control and RG function in lens-derived cells.
Collapse
Affiliation(s)
- Anne M Terrell
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sylvie F Smith
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Christine A Dang
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Stephanie M Waters
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Mallika Pathania
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
21
|
Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F, Gudjonsson JE, Baldi PF, Andersen B. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124:5205-18. [PMID: 25347468 DOI: 10.1172/jci77138] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
Collapse
|
22
|
Fan J, Ponferrada VG, Sato T, Vemaraju S, Fruttiger M, Gerhardt H, Ferrara N, Lang RA. Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling. Development 2013; 141:448-59. [PMID: 24353059 PMCID: PMC3879820 DOI: 10.1242/dev.097949] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiogenesis defines the process in which new vessels grow from existing vessels. Using the mouse retina as a model system, we show that cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is highly expressed in angiogenic endothelial cells. Conditional deletion of the Crim1 gene in vascular endothelial cells (VECs) causes delayed vessel expansion and reduced vessel density. Based on known Vegfa binding by Crim1 and Crim1 expression in retinal vasculature, where angiogenesis is known to be Vegfa dependent, we tested the hypothesis that Crim1 is involved in the regulation of Vegfa signaling. Consistent with this hypothesis, we showed that VEC-specific conditional compound heterozygotes for Crim1 and Vegfa exhibit a phenotype that is more severe than each single heterozygote and indistinguishable from that of the conditional homozygotes. We further showed that human CRIM1 knockdown in cultured VECs results in diminished phosphorylation of VEGFR2, but only when VECs are required to rely on an autocrine source of VEGFA. The effect of CRIM1 knockdown on reducing VEGFR2 phosphorylation was enhanced when VEGFA was also knocked down. Finally, an anti-VEGFA antibody did not enhance the effect of CRIM1 knockdown in reducing VEGFR2 phosphorylation caused by autocrine signaling, but VEGFR2 phosphorylation was completely suppressed by SU5416, a small-molecule VEGFR2 kinase inhibitor. These data are consistent with a model in which Crim1 enhances the autocrine signaling activity of Vegfa in VECs at least in part via Vegfr2.
Collapse
Affiliation(s)
- Jieqing Fan
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wolf L, Harrison W, Huang J, Xie Q, Xiao N, Sun J, Kong L, Lachke SA, Kuracha MR, Govindarajan V, Brindle PK, Ashery-Padan R, Beebe DC, Overbeek PA, Cvekl A. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res 2013; 41:10199-214. [PMID: 24038357 PMCID: PMC3905850 DOI: 10.1093/nar/gkt824] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300−/− ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens.
Collapse
Affiliation(s)
- Louise Wolf
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Observations of hereditary glomerular disease support the contention that podocyte intercellular junction proteins are essential for junction formation and maintenance. Genetic deletion of most of these podocyte intercellular junction proteins results in foot process effacement and proteinuria. This review focuses on the current understanding of molecular mechanisms by which podocyte intercellular junction proteins such as the nephrin-neph1-podocin-receptor complex coordinate cytoskeletal dynamics and thus intercellular junction formation, maintenance, and injury-dependent remodeling.
Collapse
|
25
|
Phua YL, Martel N, Pennisi DJ, Little MH, Wilkinson L. Distinct sites of renal fibrosis inCrim1mutant mice arise from multiple cellular origins. J Pathol 2013; 229:685-96. [DOI: 10.1002/path.4155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Leng Phua
- Institute for Molecular Bioscience; University of Queensland; Australia
| | - Nick Martel
- Institute for Molecular Bioscience; University of Queensland; Australia
| | - David J Pennisi
- School of Biomedical Sciences; University of Queensland; Australia
| | - Melissa H Little
- Institute for Molecular Bioscience; University of Queensland; Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience; University of Queensland; Australia
| |
Collapse
|
26
|
Lee Y, Yoon KA, Joo J, Lee D, Bae K, Han JY, Lee JS. Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 2012; 34:307-13. [PMID: 23144319 DOI: 10.1093/carcin/bgs356] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The prognostic significance of inherited genetic variants in advanced-stage non-small cell lung cancer (NSCLC) patients remains unknown. In this study, we genotyped 271 817 single-nucleotide polymorphisms in 348 advanced NSCLC patients who received chemotherapy and analyzed their association with prognosis by using Cox proportional hazard regression model adjusted for known prognostic factors. Top candidate single-nucleotide polymorphisms (SNPs) were selected using the bootstrap re-sampling procedure. Median age of patient population was 56 years. Proportions of female, never smokers and adenocarcinoma were 64.9, 67.5 and 80.4%, respectively. We identified 17 top candidate SNPs related to prognosis using cut-off minimum P value of <5.0 × 10(-5) in at least 70% of 1000 bootstrap samples. These SNPs were located in the genomic regions of the FAM154A, ANKS1A, DLST, THSD7B, NCOA2, CDH8, SLC35D2, NALCN and EGF genes. The most significant SNP, rs1571228 (9p22.1:FAM154A), was significantly associated with overall survival in dominant model [AG+GG to AA, hazard ratio (HR) of death (95% CI) = 0.53 (0.42-0.67); P = 2.025 × 10(-7)]. The SNP at 4q25:EGF, rs11098063, for which some genetic variations was previously reported to be associated with prognosis, also showed significant association with overall survival in additive model [CC versus CT versus TT, HR (95% CI) = 1.00 versus 0.61 (0.47-0.78) versus 0.39 (0.19-0.79); P = 9.582 × 10(-6)]. Survival differences according to the genotype of these SNPs were independent of sex, smoking, histology and chemotherapy regimens. These results suggested the variants at multiple genetic loci might contribute to the risk of death in advanced NSCLC patients receiving chemotherapy.
Collapse
Affiliation(s)
- Youngjoo Lee
- Center for Lung Cancer, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Little MH. Renal organogenesis: what can it tell us about renal repair and regeneration? Organogenesis 2012; 7:229-41. [PMID: 22198432 DOI: 10.4161/org.7.4.18057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
| |
Collapse
|
28
|
Wilkinson L, Kurniawan ND, Phua YL, Nguyen MJ, Li J, Galloway GJ, Hashitani H, Lang RJ, Little MH. Association between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant mice. J Pathol 2012; 227:499-510. [PMID: 22488641 DOI: 10.1002/path.4036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 12/25/2022]
Abstract
Crim1 hypomorphic (Crim1(KST264/KST264)) mice display progressive renal disease characterized by glomerular defects, leaky peritubular vasculature, and progressive interstitial fibrosis. Here we show that 27% of these mice also present with hydronephrosis, suggesting obstructive nephropathy. Dynamic magnetic resonance imaging using Magnevist showed fast development of hypo-intense signal in the kidneys of Crim1(KST264/KST264) mice, suggesting pooling of filtrate within the renal parenchyma. Rhodamine dextran (10 kDa) clearance was also delayed in Crim1(KST264/KST264) mice. Pyeloureteric peristalsis, while present, was less co-ordinated in Crim1(KST264/KST264) mice. However, isolated renal pelvis preparations suggest normal pelvic smooth muscle contractile responses. An analysis of maturation during the immediate postnatal period [postnatal day (P) 0-15] revealed defects in papillary extension in Crim1({KST264/KST264) mice. While Crim1 expression is weak in pelvic smooth muscle, strong expression is seen in the interstitium and loops of Henle of the extending papilla, commencing at the tip of the P1 papilla and disseminating throughout the papilla by P15. These results, as well as implicating Crim1 in papillary extension and pelvic smooth muscle contractility, highlight the previously unrecognized association between defects in papillary development and progression to chronic kidney disease later in life.
Collapse
Affiliation(s)
- Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chiu HS, York JP, Wilkinson L, Zhang P, Little MH, Pennisi DJ. Production of a mouse line with a conditional Crim1 mutant allele. Genesis 2012; 50:711-6. [PMID: 22511315 DOI: 10.1002/dvg.22032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/27/2012] [Accepted: 04/12/2012] [Indexed: 11/09/2022]
Abstract
Crim1 is a developmentally expressed, transmembrane protein essential for normal embryonic development. We generated mice engineered to contain a Crim1 conditional null allele by flanking exons three and four of Crim1 with unidirectional LoxP sites. After crossing Crim1+/FLOX mice with a CMV-Cre line, a Crim1+/Δflox colony was established after germline transmission of the deleted allele. We then analyzed genomic DNA, mRNA transcripts, and protein expression from Crim1Δflox/Δflox null mice to confirm the nature of the genomic lesion. Crim1Δflox/Δflox mice displayed phenotypes similar to those previously described for a Crim1 gene-trap mutant, Crim1KST264/KST264, including perinatal lethality, digit syndactyly, eye, and kidney abnormalities, with varying penetrance and severity. The production of a conditional mutant allele represents a valuable resource for the study of the tissue-specific roles for Crim1, and for understanding the pleimorphic phenotypes associated with Crim1 mutation.
Collapse
Affiliation(s)
- Han Sheng Chiu
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
30
|
CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis. PLoS One 2012; 7:e32635. [PMID: 22427856 PMCID: PMC3299674 DOI: 10.1371/journal.pone.0032635] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/28/2012] [Indexed: 02/01/2023] Open
Abstract
In multicellular organisms, morphogenesis is a highly coordinated process that requires dynamically regulated adhesion between cells. An excellent example of cellular morphogenesis is the formation of the neural tube from the flattened epithelium of the neural plate. Cysteine-rich motor neuron protein 1 (CRIM1) is a single-pass (type 1) transmembrane protein that is expressed in neural structures beginning at the neural plate stage. In the frog Xenopus laevis, loss of function studies using CRIM1 antisense morpholino oligonucleotides resulted in a failure of neural development. The CRIM1 knockdown phenotype was, in some cases, mild and resulted in perturbed neural fold morphogenesis. In severely affected embryos there was a dramatic failure of cell adhesion in the neural plate and complete absence of neural structures subsequently. Investigation of the mechanism of CRIM1 function revealed that it can form complexes with ß-catenin and cadherins, albeit indirectly, via the cytosolic domain. Consistent with this, CRIM1 knockdown resulted in diminished levels of cadherins and ß-catenin in junctional complexes in the neural plate. We conclude that CRIM1 is critical for cell-cell adhesion during neural development because it is required for the function of cadherin-dependent junctions.
Collapse
|
31
|
Pennisi D, Kinna G, Chiu H, Simmons D, Wilkinson L, Little M. Crim1 has an essential role in glycogen trophoblast cell and sinusoidal-trophoblast giant cell development in the placenta. Placenta 2012; 33:175-82. [DOI: 10.1016/j.placenta.2011.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
32
|
James RE, Broihier HT. Crimpy inhibits the BMP homolog Gbb in motoneurons to enable proper growth control at the Drosophila neuromuscular junction. Development 2011; 138:3273-86. [PMID: 21750037 DOI: 10.1242/dev.066142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The BMP pathway is essential for scaling of the presynaptic motoneuron arbor to the postsynaptic muscle cell at the Drosophila neuromuscular junction (NMJ). Genetic analyses indicate that the muscle is the BMP-sending cell and the motoneuron is the BMP-receiving cell. Nevertheless, it is unclear how this directionality is established as Glass bottom boat (Gbb), the known BMP ligand, is active in motoneurons. We demonstrate that crimpy (cmpy) limits neuronal Gbb activity to permit appropriate regulation of NMJ growth. cmpy was identified in a screen for motoneuron-expressed genes and encodes a single-pass transmembrane protein with sequence homology to vertebrate Cysteine-rich transmembrane BMP regulator 1 (Crim1). We generated a targeted deletion of the cmpy locus and find that loss-of-function mutants exhibit excessive NMJ growth. In accordance with its expression profile, tissue-specific rescue experiments indicate that cmpy functions neuronally. The overgrowth in cmpy mutants depends on the activity of the BMP type II receptor Wishful thinking, arguing that Cmpy acts in the BMP pathway upstream of receptor activation and raising the possibility that it inhibits Gbb activity in motoneurons. Indeed, the cmpy mutant phenotype is strongly suppressed by RNAi-mediated knockdown of Gbb in motoneurons. Furthermore, Cmpy physically interacts with the Gbb precursor protein, arguing that Cmpy binds Gbb prior to the secretion of mature ligand. These studies demonstrate that Cmpy restrains Gbb activity in motoneurons. We present a model whereby this inhibition permits the muscle-derived Gbb pool to predominate at the NMJ, thus establishing the retrograde directionality of the pro-growth BMP pathway.
Collapse
Affiliation(s)
- Rebecca E James
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
33
|
Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res 2011; 8:58-73. [PMID: 22099021 DOI: 10.1016/j.scr.2011.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/01/2023] Open
Abstract
Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.
Collapse
|
34
|
Arnolds DE, Chu A, McNally EM, Nobrega MA, Moskowitz IP. The emerging genetic landscape underlying cardiac conduction system function. ACTA ACUST UNITED AC 2011; 91:578-85. [PMID: 21538814 DOI: 10.1002/bdra.20800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/26/2011] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Proper function of an organized Cardiac Conduction System (CCS) is vital to the survival of metazoans ranging from fly to man. The routine use of non-invasive electrocardiogram measures in the diagnosis and monitoring of cardiovascular health has established a trove of reliable CCS functional data in both normal and diseased cardiac states. Recent combination of echocardiogram (ECG) data with genome-wide association studies has identified genomic regions implicated in ECG variability which impact CCS function. In this study, we review the substantial recent progress in this area, highlighting the identification of novel loci, confirming the importance of previously implicated loci in CCS function, and exploring potential links between genes with important roles in developmental processes and variation in function of the CCS.
Collapse
Affiliation(s)
- David E Arnolds
- Departments of Pediatrics and Pathology,The University of Chicago, 900 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
35
|
Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabási AL, Zoghbi HY. Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet 2010; 20:510-27. [PMID: 21078624 PMCID: PMC3016911 DOI: 10.1093/hmg/ddq496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Spinocerebellar ataxias 6 and 7 (SCA6 and SCA7) are neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine (polyQ) tracts in CACNA1A, the alpha1A subunit of the P/Q-type calcium channel, and ataxin-7 (ATXN7), a component of a chromatin-remodeling complex, respectively. We hypothesized that finding new protein partners for ATXN7 and CACNA1A would provide insight into the biology of their respective diseases and their relationship to other ataxia-causing proteins. We identified 118 protein interactions for CACNA1A and ATXN7 linking them to other ataxia-causing proteins and the ataxia network. To begin to understand the biological relevance of these protein interactions within the ataxia network, we used OMIM to identify diseases associated with the expanded ataxia network. We then used Medicare patient records to determine if any of these diseases co-occur with hereditary ataxia. We found that patients with ataxia are at 3.03-fold greater risk of these diseases than Medicare patients overall. One of the diseases comorbid with ataxia is macular degeneration (MD). The ataxia network is significantly (P= 7.37 × 10−5) enriched for proteins that interact with known MD-causing proteins, forming a MD subnetwork. We found that at least two of the proteins in the MD subnetwork have altered expression in the retina of Ataxin-7266Q/+ mice suggesting an in vivo functional relationship with ATXN7. Together these data reveal novel protein interactions and suggest potential pathways that can contribute to the pathophysiology of ataxia, MD, and diseases comorbid with ataxia.
Collapse
Affiliation(s)
- Juliette J Kahle
- Department of Cellular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
miRNA-mediated functional changes through co-regulating function related genes. PLoS One 2010; 5:e13558. [PMID: 21042576 PMCID: PMC2962631 DOI: 10.1371/journal.pone.0013558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/24/2010] [Indexed: 12/30/2022] Open
Abstract
Background microRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. Results To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. Conclusions With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.
Collapse
|
37
|
Umulis D, O'Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development 2009; 136:3715-28. [PMID: 19855014 DOI: 10.1242/dev.031534] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In many cases, the level, positioning and timing of signaling through the bone morphogenetic protein (BMP) pathway are regulated by molecules that bind BMP ligands in the extracellular space. Whereas many BMP-binding proteins inhibit signaling by sequestering BMPs from their receptors, other BMP-binding proteins cause remarkably context-specific gains or losses in signaling. Here, we review recent findings and hypotheses on the complex mechanisms that lead to these effects, with data from developing systems, biochemical analyses and mathematical modeling.
Collapse
Affiliation(s)
- David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, IN 47907, USA
| | | | | |
Collapse
|
38
|
Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int 2009; 76:1161-71. [PMID: 19776720 DOI: 10.1038/ki.2009.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crim1 is a cell-surface, transmembrane protein that binds to a variety of cystine knot-containing growth factors, including vascular endothelial growth factor A. In the developing renal glomerulus, Crim1 acts to tether vascular endothelial growth factor A to the podocyte cell surface, thus regulating its release to glomerular endothelial cells. The hypomorphic transgenic mouse (Crim1(KST264/KST264)) has glomerular cysts and severe glomerular vascular defects because of the lack of functional Crim1 in the glomerulus. Adult transgenic mice have a reduced glomerular filtration rate and glomerular capillary defects. We now show that, in these adult transgenic mice, renal vascular defects are not confined to the glomerulus but also extend to the peritubular microvasculature, as live imaging revealed leakiness of both glomerular and peritubular capillaries. An ultrastructural analysis of the microvasculature showed an abnormal endothelium and collagen deposition between the endothelium and the tubular basement membrane, present even in juvenile mice. Overt renal disease, including fibrosis and renin recruitment, was not evident until adulthood. Our study suggests that Crim1 is involved in endothelial maintenance and integrity and its loss contributes to a primary defect in the extraglomerular vasculature.
Collapse
|
39
|
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated at various stages, and extracellulary, mainly regulated by certain classes of molecules termed as BMP antagonists and pro-BMP factors. BMP antagonists inhibit BMP function by prohibiting them from binding their cognate receptors, whereas pro-BMP factors stimulate BMP function. In this review, the functions of these BMP regulators will be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Motoko Yanagita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
40
|
Nyström J, Hultenby K, Ek S, Sjölund J, Axelson H, Jirström K, Saleem MA, Nilsson K, Johansson ME. CRIM1 is localized to the podocyte filtration slit diaphragm of the adult human kidney. Nephrol Dial Transplant 2009; 24:2038-44. [PMID: 19158190 PMCID: PMC2698089 DOI: 10.1093/ndt/gfn743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background. CRIM1 is a plasma membrane bound protein containing six cysteine-rich repeats (CRR). Through these, CRIM1 has been shown to interact with a subgroup of the TGF-β superfamily, the bone morphogenic proteins (BMP) isoforms 2, 4 and 7. The probable action is to modulate the signalling properties of these factors. CRIM1 has also been shown to regulate the release of VEGFA by podocytes during renal organogenesis. Knock-out studies in mice have shown that CRIM1 is critically involved in the development of the central nervous system, eye and kidney. Replacement of CRIM1 with a defective version leads to renal dysgenesis and perinatal death. We have analysed the distribution of CRIM1 in adult human renal tissue. Methods. To this end, we have used immunofluorescence, immunohistochemistry and immunoelectron microscopy. We performed western blotting for the CRIM1 protein, using lysates from isolated glomerular podocytes and human renal tissue homogenate. By using quantitative PCR, we compared the CRIM1 mRNA levels in podocytes, human renal tissue homogenate, primary human renal proximal tubular epithelial cells and primary human pulmonary artery smooth muscle cells. Results. The results show that in the human adult kidney, CRIM1 is mainly expressed in the glomerular podocytes and is associated with the insertional region of the filtration slit diaphragm (SD) of the podocyte pedicles. Conclusions. CRIM1 is a protein that should be added to the list of proteins associated with the podocyte filtration SD and with the probable action of modulating BMP and VEGFA signalling.
Collapse
Affiliation(s)
- Jenny Nyström
- Department of Nephrology, Göteborg University, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fung WY, Fat KFC, Eng CKS, Lau CK. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans. Dev Biol 2007; 311:95-105. [PMID: 17869238 DOI: 10.1016/j.ydbio.2007.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/30/2007] [Accepted: 08/07/2007] [Indexed: 11/23/2022]
Abstract
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.
Collapse
Affiliation(s)
- Wong Yan Fung
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|
42
|
Wilkinson L, Gilbert T, Kinna G, Ruta LA, Pennisi D, Kett M, Little MH. Crim1KST264/KST264Mice Implicate Crim1 in the Regulation of Vascular Endothelial Growth Factor-A Activity during Glomerular Vascular Development. J Am Soc Nephrol 2007; 18:1697-708. [PMID: 17460146 DOI: 10.1681/asn.2006091012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Crim1, a transmembrane cysteine-rich repeat-containing protein that is related to chordin, plays a role in the tethering of growth factors at the cell surface. Crim1 is expressed in the developing kidney; in parietal cells, podocytes, and mesangial cells of the glomerulus; and in pericytes that surround the arterial vasculature. A gene-trap mouse line with an insertion in the Crim1 gene (Crim1(KST264/KST264)) displayed perinatal lethality with defects in multiple organ systems. This study further analyzed the defects that are present within the kidneys of these mice. Crim1(KST264/KST264) mice displayed abnormal glomerular development, illustrated by enlarged capillary loops, podocyte effacement, and mesangiolysis. When outbred, homozygotes that reached birth displayed podocyte and glomerular endothelial cell defects and marked albuminuria. The podocytic co-expression of Crim1 with vascular endothelial growth factor-A (VEGF-A) suggested a role for Crim1 in the regulation of VEGF-A action. Crim1 and VEGF-A were shown to interact directly, providing evidence that cysteine-rich repeat-containing proteins can bind to non-TGF-beta superfamily ligands. Crim1(KST264/KST264) mice display a mislocalization of VEGF-A within the developing glomerulus, as assessed by immunogold electron microscopy and increased activation of VEGF receptor 2 (Flk1) in the glomerular endothelial cells, suggesting that Crim1 regulates the delivery of VEGF-A by the podocytes to the endothelial cells. This is the first in vivo demonstration of regulation of VEGF-A delivery and supports the hypothesis that Crim1 functions to regulate the release of growth factors from the cell of synthesis.
Collapse
Affiliation(s)
- Lorine Wilkinson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 4072
| | | | | | | | | | | | | |
Collapse
|