1
|
Laddach A, Pachnis V, Shapiro M. TrajectoryGeometry suggests cell fate decisions can involve branches rather than bifurcations. NAR Genom Bioinform 2024; 6:lqae139. [PMID: 39380945 PMCID: PMC11459380 DOI: 10.1093/nargab/lqae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Differentiation of multipotential progenitor cells is a key process in the development of any multi-cellular organism and often continues throughout its life. It is often assumed that a bi-potential progenitor develops along a (relatively) straight trajectory until it reaches a decision point where the trajectory bifurcates. At this point one of two directions is chosen, each direction representing the unfolding of a new transcriptional programme. However, we have lacked quantitative means for testing this model. Accordingly, we have developed the R package TrajectoryGeometry. Applying this to published data we find several examples where, rather than bifurcate, developmental pathways branch. That is, the bipotential progenitor develops along a relatively straight trajectory leading to one of its potential fates. A second relatively straight trajectory branches off from this towards the other potential fate. In this sense only cells that branch off to follow the second trajectory make a 'decision'. Our methods give precise descriptions of the genes and cellular pathways involved in these trajectories. We speculate that branching may be the more common behaviour and may have advantages from a control-theoretic viewpoint.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
2
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Budi NYP, Lai WY, Huang YH, Ho HN. 3D organoid cultivation improves the maturation and functional differentiation of cholangiocytes from human pluripotent stem cells. Front Cell Dev Biol 2024; 12:1361084. [PMID: 39040044 PMCID: PMC11260683 DOI: 10.3389/fcell.2024.1361084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Idiopathic cholangiopathies are diseases that affect cholangiocytes, and they have unknown etiologies. Currently, orthotopic liver transplantation is the only treatment available for end-stage liver disease. Limited access to the bile duct makes it difficult to model cholangiocyte diseases. In this study, by mimicking the embryonic development of cholangiocytes and using a robust, feeder- and serum-free protocol, we first demonstrate the generation of unique functional 3D organoids consisting of small and large cholangiocytes derived from human pluripotent stem cells (PSCs), as opposed to traditional 2D culture systems. At day 28 of differentiation, the human PSC-derived cholangiocytes expressed markers of mature cholangiocytes, such as CK7, CK19, and cystic fibrosis transmembrane conductance regulator (CFTR). Compared with the 2D culture system-generated cholangiocytes, the 3D cholangiocyte organoids (COs) showed higher expression of the region-specific markers of intrahepatic cholangiocytes YAP1 and JAG1 and extrahepatic cholangiocytes AQP1 and MUC1. Furthermore, the COs had small-large tube-like structures and functional assays revealed that they exhibited characteristics of mature cholangiocytes, such as multidrug resistance protein 1 transporter function and CFTR channel activity. In addition to the extracellular matrix supports, the epidermal growth factor receptor (EGFR)-mediated signaling regulation might be involved in this cholangiocyte maturation and differentiation. These results indicated the successful generation of intrahepatic and extrahepatic cholangiocytes by using our 3D organoid protocol. The results highlight the advantages of our 3D culture system over the 2D culture system in promoting the functional differentiation and maturation of cholangiocytes. In summary, in advance of the previous works, our study provides a possible concept of small-large cholangiocyte transdifferentiation of human PSCs under cost-effective 3D culture conditions. The study findings have implications for the development of effective cell-based therapy using COs for patients with cholangiopathies.
Collapse
Affiliation(s)
- Nova Yuli Prasetyo Budi
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Ji R, Chen J, Xie Y, Dou X, Qing B, Liu Z, Lu Y, Dang L, Zhu X, Sun Y, Zheng X, Zhang L, Guo D, Chen Y. Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. J Hepatol 2023; 78:754-769. [PMID: 36681161 DOI: 10.1016/j.jhep.2022.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Cholangiocytes transit from quiescence to hyperproliferation during cystogenesis in polycystic liver disease (PLD), the severity of which displays prominent sex differences. Epigenetic regulation plays important roles in cell state transition. We aimed to investigate the sex-specific epigenetic basis of hepatic cystogenesis and to develop therapeutic strategies targeting epigenetic modifications for PLD treatment. METHODS Normal and cystic primary cholangiocytes were isolated from wild-type and PLD mice of both sexes. Chromatin states were characterized by analyzing chromatin accessibility (ATAC sequencing) and multiple histone modifications (chromatin immunoprecipitation sequencing). Differential gene expression was determined by transcriptomic analysis (RNA sequencing). Pharmacologic inhibition of epigenetic modifying enzymes was undertaken in PLD model mice. RESULTS Through genome-wide profiling of chromatin dynamics, we revealed a profound increase of global chromatin accessibility during cystogenesis in both male and female PLD cholangiocytes. We identified a switch from H3K9me3 to H3K9ac on cis-regulatory DNA elements of cyst-associated genes and showed that inhibition of H3K9ac acetyltransferase or H3K9me3 demethylase slowed cyst growth in male, but not female, PLD mice. In contrast, we found that H3K27ac was specifically increased in female PLD mice and that genes associated with H3K27ac-gained regions were enriched for cyst-related pathways. In an integrated epigenomic and transcriptomic analysis, we identified an estrogen receptor alpha-centered transcription factor network associated with the H3K27ac-regulated cystogenic gene expression program in female PLD mice. CONCLUSIONS Our findings highlight the multi-layered sex-specific epigenetic dynamics underlying cholangiocyte state transition and reveal a potential epigenetic therapeutic strategy for male PLD patients. IMPACT AND IMPLICATIONS In the present study, we elucidate a sex-specific epigenetic mechanism underlying the cholangiocyte state transition during hepatic cystogenesis and identify epigenetic drugs that effectively slow cyst growth in male PLD mice. These findings underscore the importance of sex difference in the pathogenesis of PLD and may guide researchers and physicians to develop sex-specific personalized approaches for PLD treatment.
Collapse
Affiliation(s)
- Rongjie Ji
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jiayuan Chen
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyang Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xudan Dou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Bo Qing
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China.
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2–5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
- Correspondence: Luiz Fernando Norcia, Department of Surgery, São Paulo State University (UNESP), Medical School, 783 Pedro Delmanto Street, Botucatu, São Paulo, 18610-303, Brazil, Tel +55 19982840542, Email
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
6
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
7
|
Ogawa M, Jiang JX, Xia S, Yang D, Ding A, Laselva O, Hernandez M, Cui C, Higuchi Y, Suemizu H, Dorrell C, Grompe M, Bear CE, Ogawa S. Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun 2021; 12:6504. [PMID: 34764255 PMCID: PMC8586142 DOI: 10.1038/s41467-021-26764-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.
Collapse
Affiliation(s)
- Mina Ogawa
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Jia-Xin Jiang
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Sunny Xia
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Donghe Yang
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Avrilynn Ding
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Onofrio Laselva
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada
| | - Marcela Hernandez
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Changyi Cui
- grid.231844.80000 0004 0474 0428McEwen Stem Cell Institute, University Health Network, Toronto, ON Canada
| | - Yuichiro Higuchi
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Hiroshi Suemizu
- grid.452212.20000 0004 0376 978XCentral Institute for Experimental Animals, Kawasaki, Kanagawa Japan
| | - Craig Dorrell
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Markus Grompe
- grid.5288.70000 0000 9758 5690Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Christine E. Bear
- grid.42327.300000 0004 0473 9646Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, Toronto, ON Canada
| | - Shinichiro Ogawa
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada. .,Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Trivedi N, Kumar D. Fibroblast growth factor and kidney disease: Updates for emerging novel therapeutics. J Cell Physiol 2021; 236:7909-7925. [PMID: 34196395 DOI: 10.1002/jcp.30497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The discovery of fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) provided a profound new insight into physiological and metabolic functions. FGF has a large family by having divergent structural elements and enable functional divergence and specification. FGF and FGFRs are highly expressed during kidney development. Signals from the ureteric bud regulate morphogenesis, nephrogenesis, and nephron progenitor survival. Thus, FGF signaling plays an important role in kidney progenitor cell aggregation at the sites of new nephron formation. This review will summarize the current knowledge about functions of FGF signaling in kidney development and their ability to promote regeneration in injured kidneys and its use as a biomarker and therapeutic target in kidney diseases. Further studies are essential to determine the predictive significance of the various FGF/FGFR deviations and to integrate them into clinical algorithms.
Collapse
Affiliation(s)
- Neerja Trivedi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Yasen A, Li W, Maimaitinijiati Y, Aini A, Ran B, Wang H, Tuxun T, Shao Y, Aji T, Wen H. Direct effects of transforming growth factor-β1 signaling on the differentiation fate of fetal hepatic progenitor cells. Regen Med 2020; 15:1719-1733. [PMID: 32772793 DOI: 10.2217/rme-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate direct roles of TGF-β1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-β1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-β1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-β1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-β1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-β1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-β1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China.,Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Wending Li
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | | | - Abudusalamu Aini
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | - Bo Ran
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hao Wen
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China.,State Key Laboratory of Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 393 Xin Yi Road, Urumqi 830011, PR China
| |
Collapse
|
11
|
Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver Matrix in Benign and Malignant Biliary Tract Disease. Semin Liver Dis 2020; 40:282-297. [PMID: 32162285 DOI: 10.1055/s-0040-1705109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular matrix is a highly reactive scaffold formed by a wide array of multifunctional molecules, encompassing collagens and noncollagenous glycoproteins, proteoglycans, glycosaminoglycans, and polysaccharides. Besides outlining the tissue borders, the extracellular matrix profoundly regulates the behavior of resident cells by transducing mechanical signals, and by integrating multiple cues derived from the microenvironment. Evidence is mounting that changes in the biostructure of the extracellular matrix are instrumental for biliary repair. Following biliary damage and eventually, malignant transformation, the extracellular matrix undergoes several quantitative and qualitative modifications, which direct interactions among hepatic progenitor cells, reactive ductular cells, activated myofibroblasts and macrophages, to generate the ductular reaction. Herein, we will give an overview of the main molecular factors contributing to extracellular matrix remodeling in cholangiopathies. Then, we will discuss the structural alterations in terms of biochemical composition and physical stiffness featuring the "desmoplastic matrix" of cholangiocarcinoma along with their pro-oncogenic effects.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Silvia Cagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Michigan
| |
Collapse
|
12
|
Wang X, Yang L, Wang YC, Xu ZR, Feng Y, Zhang J, Wang Y, Xu CR. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 2020; 30:1109-1126. [PMID: 32690901 PMCID: PMC7784864 DOI: 10.1038/s41422-020-0378-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Ye Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Jing Zhang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Yi Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Manieri E, Folgueira C, Rodríguez ME, Leiva-Vega L, Esteban-Lafuente L, Chen C, Cubero FJ, Barrett T, Cavanagh-Kyros J, Seruggia D, Rosell A, Sanchez-Cabo F, Gómez MJ, Monte MJ, G Marin JJ, Davis RJ, Mora A, Sabio G. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proc Natl Acad Sci U S A 2020; 117:16492-16499. [PMID: 32601222 PMCID: PMC7368313 DOI: 10.1073/pnas.2002672117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Elisa Manieri
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - María Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Laura Esteban-Lafuente
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology, and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Alejandro Rosell
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Fátima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Manuel Jose Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Maria J Monte
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for Study of Liver and Gastrointestinal Diseases (CIBERehd), University of Salamanca, 37007 Salamanca, Spain
| | - Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for Study of Liver and Gastrointestinal Diseases (CIBERehd), University of Salamanca, 37007 Salamanca, Spain
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain;
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain;
| |
Collapse
|
14
|
Cadamuro M, Girardi N, Gores GJ, Strazzabosco M, Fabris L. The Emerging Role of Macrophages in Chronic Cholangiopathies Featuring Biliary Fibrosis: An Attractive Therapeutic Target for Orphan Diseases. Front Med (Lausanne) 2020; 7:115. [PMID: 32373615 PMCID: PMC7186419 DOI: 10.3389/fmed.2020.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiopathies are a heterogeneous group of chronic liver diseases caused by different types of injury targeting the biliary epithelium, such as genetic defects and immune-mediated attacks. Notably, most cholangiopathies are orphan, thereby representing one of the major gaps in knowledge of the modern hepatology. A typical hallmark of disease progression in cholangiopathies is portal scarring, and thus development of effective therapeutic approaches would aim to hinder cellular and molecular mechanisms underpinning biliary fibrogenesis. Recent lines of evidence indicate that macrophages, rather than more conventional cell effectors of liver fibrosis such as hepatic stellate cells and portal fibroblasts, are actively involved in the earliest stages of biliary fibrogenesis by exchanging a multitude of cues with cholangiocytes, which promote their recruitment from the circulating compartment owing to a senescent or an immature epithelial phenotype. Two cholangiopathies, namely primary sclerosing cholangitis and congenital hepatic fibrosis, are paradigmatic of this mechanism. This review summarizes current understandings of the cytokine and extracellular vesicles-mediated communications between cholangiocytes and macrophages typically occurring in the two cholangiopathies to unveil potential novel targets for the treatment of biliary fibrosis.
Collapse
Affiliation(s)
| | - Noemi Girardi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, NY, United States
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, United States
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Kitade M, Kaji K, Nishimura N, Seki K, Nakanishi K, Tsuji Y, Sato S, Saikawa S, Takaya H, Kawaratani H, Namisaki T, Moriya K, Mitoro A, Yoshiji H. Blocking development of liver fibrosis augments hepatic progenitor cell-derived liver regeneration in a mouse chronic liver injury model. Hepatol Res 2019; 49:1034-1045. [PMID: 30989766 DOI: 10.1111/hepr.13351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023]
Abstract
AIM The roles of hepatic progenitor cells (HPCs) in regeneration of a diseased liver are unclear. Hepatic stellate cells (HSCs) contribute to liver fibrosis but are also a component of the HPC niche. Hepatic progenitor cells expand along with HSC activation and liver fibrosis. However, little is known about the interplay of liver fibrosis and HPC-mediated liver regeneration. This study aimed to investigate HSCs and HPCs in liver regeneration. METHODS Liver injury in mice was induced with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, and HPC expansion and fibrosis were assessed. An angiotensin II type 1 receptor blocker (ARB) was administered to assess its effect on fibrosis and regeneration. RESULTS Treatment with ARB attenuated fibrosis and expansion of α-smooth muscle actin-positive activated HSCs as indicated by increased liver weight and Ki-67-positive hepatocytes. Immunohistochemical staining suggested that HPC differentiation was shifted toward hepatocytes (HCs) when ARB treatment decreased HPC encapsulation by HSCs and extracellular matrix. Conditioned medium produced by culturing the human HSC LX-2 line strongly augmented differentiation to biliary epithelial cells (BECs) but inhibited that to HCs. Activated HSCs expressed Jagged1, a NOTCH ligand, which plays a central role in differentiation of HPCs toward BECs. CONCLUSIONS Hepatic stellate cells, the HPC niche cells, control differentiation of HPCs, directing them toward BECs rather than HCs in a diseased liver model. Antifibrosis treatment with an ARB preferentially redirects HPC differentiation toward HCs by blocking the NOTCH pathway in the HPC niche, resulting in more efficient HPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Norihisa Nishimura
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
16
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
17
|
Abstract
Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.
Collapse
|
18
|
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns 2018; 30:7-13. [DOI: 10.1016/j.gep.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
|
19
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
20
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
21
|
Jaramillo M, Yeh H, Yarmush ML, Uygun BE. Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). J Tissue Eng Regen Med 2018; 12:e1962-e1973. [PMID: 29222839 DOI: 10.1002/term.2627] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022]
Abstract
Liver tissue engineering has emerged as a promising approach in organ transplantation but has been hampered by the lack of a reliable and readily available cell source. Human induced pluripotent stem cells hiPSCs have been highlighted as a desirable source, due to their differentiation potential, ability to self-renew, and the possibility of making patient-specific cells. We developed a decellularization protocol that efficiently removes cellular material while retaining extracellular matrix components. Subsequently, hiPSCs were differentiated on decellularized human liver extracellular matrix (hDLM) scaffolds using an established hepatic differentiation protocol. We demonstrate that using hDLM leads to upregulation markers of hepatic functions when compared with standard differentiation conditions. In addition, expression of a number of hepatic transcription and nuclear factors were found to be within levels comparable with those of primary human adult hepatocytes. Analysis of progression of differentiation on hDLM demonstrated that hepatic developmental marker expression was consistent with hepatic development. The hDLM-derived cells exhibited key hepatic characteristics that were comparable with those observed in primary neonatal human hepatocytes. We investigated the optimal timing of the introduction of hDLM into the differentiation protocol and found that the best results are obtained when cells are plated on hDLM since the earliest stages and accompanied by a progressive loss of sensitivity to substrate composition at later stages. The significance of this work is that it allows for the development of differentiation protocols that take into account signals from extracellular matrix, closely recapitulating of the in vivo micro-environment and resulting in cells that are phenotypically closer to mature hepatocytes.
Collapse
Affiliation(s)
- Maria Jaramillo
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Brandenburg J, Head JA. Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promoter methylation in developing chicken embryos. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:88-96. [PMID: 29203322 DOI: 10.1016/j.cbpc.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are potent teratogens. Recent research suggests that early life exposure to PAHs can affect health outcomes later in life. Some of these latent responses may be mediated by epigenetic mechanisms such as DNA methylation. The role of DNA methylation in regulating responses to PAHs in birds is currently unknown. Here, we assess the effect of in ovo exposure to the model PAH, benzo[k]fluoranthene (BkF), on aryl hydrocarbon receptor (AHR) mediated cytochrome P4501A (CYP1A) gene expression and promoter methylation in chicken embryos. Fertilized chicken eggs were injected with BkF (0-100μg/kg) prior to incubation. BkF exposure was associated with an increase in CYP1A4 and CYP1A5 mRNA levels at mid-incubation (embryonic day 10), which dropped to baseline levels towards the end of the incubation period (embryonic day 19). The transient induction in CYP1A expression was accompanied by small but significant increases in CYP1A promoter methylation, which persisted until after shortly after hatching. Methylation within the CYP1A promoter was correlated with levels of CYP1A5, but not CYP1A4 mRNA. Characterization of the role of DNA methylation in the AHR response pathway may increase our understanding of the effects of early life exposure to PAHs in birds.
Collapse
Affiliation(s)
- Jonas Brandenburg
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Yang L, Wang WH, Qiu WL, Guo Z, Bi E, Xu CR. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 2017; 66:1387-1401. [PMID: 28681484 PMCID: PMC5650503 DOI: 10.1002/hep.29353] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/21/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022]
Abstract
UNLABELLED How bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes remains unclear. Here, using single-cell transcriptomic analysis of hepatoblasts, hepatocytes, and cholangiocytes sorted from embryonic day 10.5 (E10.5) to E17.5 mouse embryos, we found that hepatoblast-to-hepatocyte differentiation occurred gradually and followed a linear default pathway. As more cells became fully differentiated hepatocytes, the number of proliferating cells decreased. Surprisingly, proliferating and quiescent hepatoblasts exhibited homogeneous differentiation states at a given developmental stage. This unique feature enabled us to combine single-cell and bulk-cell analyses to define the precise timing of the hepatoblast-to-hepatocyte transition, which occurs between E13.5 and E15.5. In contrast to hepatocyte development at almost all levels, hepatoblast-to-cholangiocyte differentiation underwent a sharp detour from the default pathway. New cholangiocyte generation occurred continuously between E11.5 and E14.5, but their maturation states at a given developmental stage were heterogeneous. Even more surprising, the number of proliferating cells increased as more progenitor cells differentiated into mature cholangiocytes. Based on an observation from the single-cell analysis, we also discovered that the protein kinase C/mitogen-activated protein kinase signaling pathway promoted cholangiocyte maturation. CONCLUSION Our studies have defined distinct pathways for hepatocyte and cholangiocyte development in vivo, which are critically important for understanding basic liver biology and developing effective strategies to induce stem cells to differentiate toward specific hepatic cell fates in vitro. (Hepatology 2017;66:1387-1401).
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Academy for Advanced Interdisciplinary Studies; Peking University, Beijing, 100871 China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Academy for Advanced Interdisciplinary Studies; Peking University, Beijing, 100871 China
| | - Wei-Lin Qiu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,PKU-Tsinghua-NIBS Graduate Program; Peking University, Beijing, 100871, China
| | - Zhen Guo
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China
| | - Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences; Peking University, Beijing, 100871 China,Corresponding author: Dr. Cheng-Ran Xu,
| |
Collapse
|
24
|
Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat Protoc 2017; 12:814-827. [PMID: 28333915 DOI: 10.1038/nprot.2017.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The difficulty in isolating and propagating functional primary cholangiocytes is a major limitation in the study of biliary disorders and the testing of novel therapeutic agents. To overcome this problem, we have developed a platform for the differentiation of human pluripotent stem cells (hPSCs) into functional cholangiocyte-like cells (CLCs). We have previously reported that our 26-d protocol closely recapitulates key stages of biliary development, starting with the differentiation of hPSCs into endoderm and subsequently into foregut progenitor (FP) cells, followed by the generation of hepatoblasts (HBs), cholangiocyte progenitors (CPs) expressing early biliary markers and mature CLCs displaying cholangiocyte functionality. Compared with alternative protocols for biliary differentiation of hPSCs, our system does not require coculture with other cell types and relies on chemically defined conditions up to and including the generation of CPs. A complex extracellular matrix is used for the maturation of CLCs; therefore, experience in hPSC culture and 3D organoid systems may be necessary for optimal results. Finally, the capacity of our platform for generating large amounts of disease-specific functional cholangiocytes will have broad applications for cholangiopathies, in disease modeling and for screening of therapeutic compounds.
Collapse
|
25
|
Zhou WJ, Hou XX, Wang XQ, Li DJ. Fibroblast Growth Factor 7 Regulates Proliferation and Decidualization of Human Endometrial Stromal Cells via ERK and JNK Pathway in an Autocrine Manner. Reprod Sci 2017; 24:1607-1619. [PMID: 28270036 DOI: 10.1177/1933719117697122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Decidualization is an essential activity of the endometrium in pregnancy, but the molecular mechanisms involving the initiation and maintenance have not yet been clarified. In the present study, we examined the expression of fibroblast growth factor 7 (FGF7) in endometria, normal decidua, and abortion decidua from miscarriage by immunohistochemistry. We analyzed the expression of FGF7 and FGFR2 and the levels of phosphorylated extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK) in endometrial stromal cells (ESCs), and decidual stromal cells (DSCs) from early pregnancy or miscarriage by In-Cell Western assay. The effect of FGF7 on the proliferation of decidualized ESCs was determined by bromodeoxyuridine proliferation assay. Our results show that the expression of FGF7 protein in the normal decidua is obviously higher than that of the endometrium and the abortion decidua, and the expression of FGF7 in the abortion decidua was still higher than that in the endometrium. The FGF7 expression in ESCs is significantly increased after stimulation with a combination of progesterone and 17β-estradiol or 8-bromoadenosine 3',5'-cyclic monophosphate for 12 days. The expression of FGF7 and FGFR2 and the levels of phosphorylated ERK and JNK in DSCs from normal decidua are markedly higher compared with that in ESCs from the endometrium, and the DSCs from abortion decidua had lower expression than DSCs from normal decidua but still higher than ESCs from the endometrium. Our results suggest that FGF7 may stimulate ESCs proliferation and insulin-like growth factor-binding protein 1 and prolactin expressions through ERK and JNK signal pathways in an autocrine manner.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xin-Xin Hou
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiao-Qiu Wang
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Da-Jin Li
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- 2 Department of Obstetrics and Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|
26
|
Abstract
Despite decades of basic research, biliary diseases remain prevalent, highly morbid, and notoriously difficult to treat. We have, however, dramatically increased our understanding of biliary developmental biology, cholangiocyte pathophysiology, and the endogenous mechanisms of biliary regeneration and repair. All of this complex and rapidly evolving knowledge coincides with an explosion of new technological advances in the area of regenerative medicine. New breakthroughs such as induced pluripotent stem cells and organoid culture are increasingly being applied to the biliary system; it is only a matter of time until new regenerative therapeutics for the cholangiopathies are unveiled. In this review, the authors integrate what is known about biliary development, regeneration, and repair, and link these conceptual advances to the technological breakthroughs that are collectively driving the emergence of a new global field in biliary regenerative medicine.
Collapse
Affiliation(s)
- Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
27
|
Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2016; 66:43-50. [PMID: 27979774 DOI: 10.1016/j.semcdb.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Liver development proceeds by sequential steps during which gene regulatory networks (GRNs) determine differentiation and maturation of hepatic cells. Characterizing the architecture and dynamics of these networks is essential for understanding how cell fate decisions are made during development, and for recapitulating these processes during in vitro production of liver cells for toxicology studies, disease modelling and regenerative therapy. Here we review the GRNs that control key steps of liver development and lead to differentiation of hepatocytes and cholangiocytes in mammals. We focus on GRNs determining cell fate decisions and analyse subcircuitry motifs that may confer specific dynamic properties to the networks. Finally, we put our analysis in the perspective of recent attempts to directly reprogram cells to hepatocytes by forced expression of transcription factors.
Collapse
Affiliation(s)
- Claude Gérard
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Janne Tys
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Frédéric P Lemaigre
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
28
|
Sun Y, Chi BR. Application of induced pluripotent stem cells in cholangiopathies. Shijie Huaren Xiaohua Zazhi 2016; 24:4247-4252. [DOI: 10.11569/wcjd.v24.i31.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells (ESCs) in morphology, gene expression, cell self-renewal and differentiation potential. They avoid the problem of immune rejection and ethical issues associated with the application of ESCs. The application of iPSCs in a variety of diseases provides favorable experiences to the research of liver diseases. Cholangiopathies, such as primary biliary cirrhosis and primary sclerosing cholangitis, refer to a category of uncommon diseases that possess unclear pathogenesis, lack effective treatment and have a poor prognosis. Hence, investigating cholangiopathies-derived, individualized iPSCs and their differentiation into functional cells can mimic the disease phenotype and pathological process in vitro. The application of these cells has great significance for pathogenesis exploration, drug screening and therapeutic evaluation.
Collapse
|
29
|
Kitade M, Kaji K, Yoshiji H. Relationship between hepatic progenitor cell-mediated liver regeneration and non-parenchymal cells. Hepatol Res 2016; 46:1187-1193. [PMID: 26895456 DOI: 10.1111/hepr.12682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/12/2016] [Indexed: 12/21/2022]
Abstract
Hepatic progenitor cells (HPCs) are thought to reside in the canals of Hering and can be activated and contribute to liver regeneration in response to liver injury by proliferating and differentiating towards both hepatocytes and biliary epithelial cells. In this setting, several cytokines, chemokines, and growth factors related to liver inflammation and other liver cells comprising the HPC niche, namely hepatic stellate cells (HSCs), play crucial roles in HPC activation and differentiation. In response to several types of liver injury, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is secreted by several inflammatory cells, including monocytes, T lymphocytes, and macrophages, and acts as an initiator of the HPC niche and HSC activation. Following TWEAK-induced activation of the HPC niche, fibroblast growth factor 7 and hepatocyte growth factor released from activated HSC play central roles in maintaining HPC proliferation. In contrast, HGF-MET and Wnt3a-β-catenin signals are the predominant mediators of the hepatocyte differentiation of HPC, whereas epidermal growth factor receptor-NOTCH signaling controls HPC differentiation towards biliary epithelial cells. These signals are maintained exclusively by activated HSC and inflammatory cells surrounding HPC. Together, HSC and inflammatory cells surrounding HPC are responsible for the precise control of HPC proliferation and differentiation fate. In this review, we discuss recent progress in understanding of interactions between HPC and other liver cells in HPC-mediated liver regeneration in the setting of liver inflammation.
Collapse
|
30
|
Kourouklis AP, Kaylan KB, Underhill GH. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 2016; 99:82-94. [DOI: 10.1016/j.biomaterials.2016.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
|
31
|
Malta DFB, Reticker-Flynn NE, da Silva CL, Cabral JMS, Fleming HE, Zaret KS, Bhatia SN, Underhill GH. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater 2016; 34:30-40. [PMID: 26883775 DOI: 10.1016/j.actbio.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
During tissue development, stem and progenitor cells are faced with fate decisions coordinated by microenvironmental cues. Although insights have been gained from in vitro and in vivo studies, the role of the microenvironment remains poorly understood due to the inability to systematically explore combinations of stimuli at a large scale. To overcome such restrictions, we implemented an extracellular matrix (ECM) array platform that facilitates the study of 741 distinct combinations of 38 different ECM components in a systematic, unbiased and high-throughput manner. Using embryonic stem cells as a model system, we derived definitive endoderm progenitors and applied them to the array platform to study the influence of ECM, including the interactions of ECM with growth factor signaling, on the specification of definitive endoderm cells towards the liver and pancreas fates. We identified ECM combinations that influence endoderm fate decisions towards these lineages, and demonstrated the utility of this platform for studying ECM-mediated modifications to signal activation during liver specification. In particular, defined combinations of fibronectin and laminin isoforms, as well as combinations of distinct collagen subtypes, were shown to influence SMAD pathway activation and the degree of hepatic differentiation. Overall, our systematic high-throughput approach suggests that ECM components of the microenvironment have modulatory effects on endoderm differentiation, including effects on lineage fate choice and cell adhesion and survival during the differentiation process. This platform represents a robust tool for analyzing effects of ECM composition towards the continued improvement of stem cell differentiation protocols and further elucidation of tissue development processes. STATEMENT OF SIGNIFICANCE Cellular microarrays can provide the capability to perform high-throughput investigations into the role of microenvironmental signals in a variety of cell functions. This study demonstrates the utility of a high-throughput cellular microarray approach for analyzing the effects of extracellular matrix (ECM) in liver and pancreas differentiation of endoderm progenitor cells. Despite an appreciation that ECM is likely involved in these processes, the influence of ECM, particularly combinations of matrix proteins, had not been systematically explored. In addition to the identification of relevant ECM compositions, this study illustrates the capability of the cellular microarray platform to be integrated with a diverse range of cell fate measurements, which could be broadly applied towards the investigation of cell fate regulation in other tissue development and disease contexts.
Collapse
Affiliation(s)
- D F Braga Malta
- Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - C L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - H E Fleming
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K S Zaret
- University of Pennsylvania, Philadelphia, PA, United States
| | - S N Bhatia
- Massachusetts Institute of Technology, Cambridge, MA, United States; The Howard Hughes Medical Institute, Cambridge, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 021392, United States; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - G H Underhill
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
32
|
Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix. Sci Rep 2016; 6:23490. [PMID: 27025873 PMCID: PMC4812246 DOI: 10.1038/srep23490] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
The bipotential differentiation of liver progenitor cells underlies liver development and bile duct formation as well as liver regeneration and disease. TGFβ and Notch signaling are known to play important roles in the liver progenitor specification process and tissue morphogenesis. However, the complexity of these signaling pathways and their currently undefined interactions with other microenvironmental factors, including extracellular matrix (ECM), remain barriers to complete mechanistic understanding. Utilizing a series of strategies, including co-cultures and cellular microarrays, we identified distinct contributions of different Notch ligands and ECM proteins in the fate decisions of bipotential mouse embryonic liver (BMEL) progenitor cells. In particular, we demonstrated a cooperative influence of Jagged-1 and TGFβ1 on cholangiocytic differentiation. We established ECM-specific effects using cellular microarrays consisting of 32 distinct combinations of collagen I, collagen III, collagen IV, fibronectin, and laminin. In addition, we demonstrated that exogenous Jagged-1, Delta-like 1, and Delta-like 4 within the cellular microarray format was sufficient for enhancing cholangiocytic differentiation. Further, by combining Notch ligand microarrays with shRNA-based knockdown of Notch ligands, we systematically examined the effects of both cell-extrinsic and cell-intrinsic ligand. Our results highlight the importance of divergent Notch ligand function and combinatorial microenvironmental regulation in liver progenitor fate specification.
Collapse
|
33
|
Tsai MS, Suksaweang S, Jiang TX, Wu P, Kao YH, Lee PH, Widelitz R, Chuong CM. Proper BMP Signaling Levels Are Essential for 3D Assembly of Hepatic Cords from Hepatoblasts and Mesenchymal Cells. Dig Dis Sci 2015; 60:3669-80. [PMID: 26173507 PMCID: PMC5572674 DOI: 10.1007/s10620-015-3798-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Because the molecular mechanisms of morphogenesis of the hepatic cord and sinus are unclear, we investigated the involvement of bone morphogenetic protein (BMP4) in hepatic sinusoid morphogenesis. METHODS We used embryonic chicken livers, which develop rapidly, as our model, and investigated expression of BMP-related genes. BMP4 activity was manipulated by overexpressing BMP4 and its antagonist, noggin. RESULTS During hepatic cord morphogenesis, BMP4 and its receptors are expressed in both peri-sinusoidal cells and hepatoblasts as the sinusoids form, whereas noggin is expressed transiently in peri-sinusoidal cells at early stages. Suppression of BMP activity with noggin overexpression disrupted normal hepatic sinusoid structure, leading to liver congestion, failure of fibronectin deposition, and markedly reduced numbers of peri-sinusoidal cells. However, overexpression of BMP did not change sinusoidal morphology but increased endothelial cell number. Noggin overexpression resulted in disrupted cord organization, and dilated sinusoidal space, eventually leading to increased apoptosis and failed hepatocyte differentiation. CONCLUSIONS Our results show that proper BMP signaling mediates peri-sinusoidal cell-hepatoblast interactions during development; this is essential for hepatic cord organization among hepatoblasts, endothelium, and presumptive hepatic stellate cells.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Sanong Suksaweang
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
- Department of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Ping Wu
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Ying-Hsien Kao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Po-Huang Lee
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Randall Widelitz
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA.
| |
Collapse
|
34
|
Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, Schrumpf E, Melum E, Karlsen TH, Bradley JA, Gelson WTH, Davies S, Baker A, Kaser A, Alexander GJ, Hannan NR, Vallier L. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 2015; 33:845-852. [PMID: 26167629 PMCID: PMC4768345 DOI: 10.1038/nbt.3275] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Miguel Cardoso de Brito
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Alessandro Bertero
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Filipa A. C. Soares
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Elisabeth Schrumpf
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - J. Andrew Bradley
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - William TH Gelson
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alastair Baker
- Child Health Clinical Academic Grouping, King’s Health Partners, Denmark Hill Campus, London, United Kingdom
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Graeme J. Alexander
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas R.F. Hannan
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
35
|
Abstract
Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated.
Collapse
|
36
|
Wills ES, Roepman R, Drenth JPH. Polycystic liver disease: ductal plate malformation and the primary cilium. Trends Mol Med 2014; 20:261-70. [PMID: 24506938 DOI: 10.1016/j.molmed.2014.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 02/06/2023]
Abstract
Polycystic livers are found in autosomal dominant polycystic kidney disease (ADPKD), caused by polycystic kidney disease (PKD)1 and PKD2 mutations in virtually all cases, and in isolated polycystic liver disease (PCLD), where 20% of cases are caused by mutations in Protein kinase C substrate 80K-H (PRKCSH) or SEC63. Loss of heterozygosity in single hepatoblasts leads to underlying cystogenic ductal plate malformations. Crucially, actual components driving this development remain elusive. Recent advances have unraveled the roles of transforming growth factor (TGF)-β, Notch and Wnt signaling, transcriptional regulators such as hepatocyte nuclear factor (HNF)6 and HNF1β, as well as cilium function in hepatobiliary organogenesis. In polycystic liver disease, mutation or defective co-translational processing of key elements required for primary cilium formation have been implicated. This review recapitulates liver patterning factors in hepatobiliary development and extracts molecular players in hepatic cystogenesis.
Collapse
Affiliation(s)
- Edgar S Wills
- Department of Medicine, Division of Gastroenterology and Hepatology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Joost P H Drenth
- Department of Medicine, Division of Gastroenterology and Hepatology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Yin C, Evason KJ, Asahina K, Stainier DYR. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123:1902-10. [PMID: 23635788 DOI: 10.1172/jci66369] [Citation(s) in RCA: 527] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases.
Collapse
Affiliation(s)
- Chunyue Yin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
39
|
Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:643-55. [DOI: 10.1002/wdev.47] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Cheng YM, Chou CY, Hsu YC, Chen MJ. Influence of HPV16 E6/7 on the Expression of FGF2 and FGFR Type B in Cervical Carcinogenesis. Reprod Sci 2012; 19:580-6. [DOI: 10.1177/1933719111432874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ya-Min Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Ming-Jenn Chen
- Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
41
|
Jia Y, Yao H, Zhou J, Chen L, Zeng Q, Yuan H, Shi L, Nan X, Wang Y, Yue W, Pei X. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ. J Cell Physiol 2011; 226:2807-16. [PMID: 21935930 DOI: 10.1002/jcp.22625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis.
Collapse
Affiliation(s)
- Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nagaoka M, Duncan SA. Transcriptional control of hepatocyte differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:79-101. [PMID: 21074730 DOI: 10.1016/b978-0-12-385233-5.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is the largest glandular organ in the body and plays a central role in controlling metabolism. During hepatogenesis, complex developmental processes must generate an array of cell types that are spatially arranged to generate a hepatic architecture that is essential to support liver function. The processes that control the ultimate formation of the liver are diverse and complex and in many cases poorly defined. Much of the focus of research during the past three decades has been on understanding how hepatocytes, which are the predominant liver parenchymal cells, differentiate during embryogenesis. Through a combination of mouse molecular genetics, embryology, and molecular biochemistry, investigators have defined a myriad of transcription factors that combine to control formation and function of hepatocytes. Here, we will review the major discoveries that underlie our current understanding of transcriptional regulation of hepatocyte differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
43
|
Tsai SM, Wang WP. Expression and function of fibroblast growth factor (FGF) 7 during liver regeneration. Cell Physiol Biochem 2011; 27:641-52. [PMID: 21691082 DOI: 10.1159/000330073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM Previous studies have shown that fibroblast growth factors (FGFs) are involved in the process of liver injury repair. Liver regeneration after partial hepatectomy (PH) is impaired in transgenic mice expressing dominant-negative FGFR2b in hepatocytes. Although FGF7, a ligand specifically bound to FGFR2b, is expressed by activated hepatic stellate cells (HSCs) in fibrotic livers, the expressions and functions of FGF7 and FGFR2b after PH remain unexplored. Therefore, this study sought to examine the potential role of FGF7 signaling during liver regeneration. METHODS We examined the expression of FGF7 and FGFR2b in normal and regenerating livers. Effects of FGF7 on hepatocytes were examined in vitro using primary hepatocyte culture with FGF7 recombinant protein and in vivo by hydrodynamic-based gene transfer method. RESULTS We found that FGF7 expression was increased according to the activation status of HSCs after PH. The receptor, FGFR2b, was also increased in hepatocytes during liver regeneration. In vitro treatment with FGF7 protein activated ERK1/2 and promoted proliferation of hepatocytes isolated from regenerating livers. In vivo overexpression of exogenous FGF7 could notably promote hepatic proliferation and activate MAPKs after PH. CONCLUSION This study suggests a role for activated HSC-expressed FGF7 in stimulating FGF signaling pathways in hepatocytes and regulating liver regeneration.
Collapse
Affiliation(s)
- Su-Mei Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | |
Collapse
|
44
|
Talbot NC, Blomberg LA, Garrett WM, Caperna TJ. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell Dev Biol Anim 2010; 46:746-57. [PMID: 20607619 DOI: 10.1007/s11626-010-9336-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/16/2010] [Indexed: 01/28/2023]
Abstract
The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication, morphology, and function were lost if the cells were cultured without STO feeder cells. A method for the feeder-independent continuous culture of PICM-19 cells (FI-PICM-19) is presented. PICM-19 cells were maintained and grown without feeder cells on collagen I-coated tissue culture plastic for 26 passages (P26) with initial split ratios of 1:3 that diminished to split ratios of less than 1:2 after passage 16. Once plated, the FI-PICM-19 cells were overlaid with a 1:12 to 1:50 dilution of Matrigel or related extracellular matrix product. Growth of the cells was stimulated by daily refeedings with STO feeder-cell conditioned medium. The FI-PICM-19 cells grew to an approximate confluence of 50% prior to each passage at 2-wk intervals. Growth curve analysis showed their average cell number doubling time to be ~96 h. Morphologically, the feeder-independent cells closely resembled PICM-19 cells grown on feeder cells, and biliary canalicui were present at cell-to-cell junctions. However, no spontaneous multicellular ductules formed in the monolayers of FI-PICM-19 cells. Ultrastructural subcellular features of the FI-PICM-19 cells were similar to those of PICM-19 cells cultured on feeder cells. The FI-PICM-19 cells produced a spectrum of serum proteins and expressed many liver/hepatocyte-specific genes. Importantly, cytochrome P450 (EROD) activity, ammonia clearance, and urea production were maintained by the feeder-independent cells. This simple method for the propagation of the PICM-19 cell line without feeder cells should simplify the generation and selection of functional mutants within the population and enhances the cell line's potential for use in toxicological/pharmacological screening assays and for use in an artificial liver device.
Collapse
Affiliation(s)
- Neil C Talbot
- U. S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Bldg. 200, Rm. 13, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
45
|
Hicks JA, Trakooljul N, Liu HC. Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiol Genomics 2010; 41:185-93. [DOI: 10.1152/physiolgenomics.00156.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of microRNA (miRNA, a class of small regulatory RNA) is to regulate gene expression. Studies of miRNA in mammals suggest that many liver-associated miRNAs are expressed, with a wide range of functions. To characterize miRNA expressed in the avian liver, we created two small RNA libraries from embryonic chick livers at embryonic day (E)15 and E20, a time at which the embryo begins to grow rapidly and so its energy demands increase. It is of interest to examine miRNAs expressed at these developmental stages because miRNAs involved in regulating metabolic pathways and cell proliferation are likely to be identified. The small RNA libraries were sequenced with 454 Life Sciences deep sequencing. Of the 49,937 sequences obtained, 29,390 represented known chicken miRNAs and 1,233 reads represented homologous miRNAs that have not been previously identified in chickens. Additionally, 1,032 reads represented 17 potential novel miRNAs not previously identified in any species. To further investigate the possible functions of avian liver miRNAs we identified the potential targets of two differentially expressed novel miRNAs, nc-miR-5 and nc-miR-33. These two miRNAs were predicted to target metabolic genes, including the lipid metabolism-associated gene fatty acid synthase ( FAS), and genes involved in the control of cell proliferation, such as peroxisome proliferator-activated binding protein ( Pparbp) and bone morphogenetic protein 4 ( BMP4). Our findings demonstrate that a diverse group of miRNAs are expressed in developing avian livers. In addition, some of the identified miRNAs have been suggested to play a key role(s) in regulating metabolic pathways.
Collapse
Affiliation(s)
- Julie A. Hicks
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
46
|
Abstract
Embryonic development of the liver has been studied intensely, yielding insights that impact diverse areas of developmental and cell biology. Understanding the fundamental mechanisms that control hepatogenesis has also laid the basis for the rational differentiation of stem cells into cells that display many hepatic functions. Here, we review the basic molecular mechanisms that control the formation of the liver as an organ.
Collapse
|
47
|
Zhou J, Zhao L, Qin L, Wang J, Jia Y, Yao H, Sang C, Hu Q, Shi S, Nan X, Yue W, Zhuang F, Yang C, Wang Y, Pei X. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells. PLoS One 2010; 5:e9732. [PMID: 20305811 PMCID: PMC2840022 DOI: 10.1371/journal.pone.0009732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/23/2010] [Indexed: 01/11/2023] Open
Abstract
Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.
Collapse
Affiliation(s)
- Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Lei Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lipeng Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Jing Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hailei Yao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qinghua Hu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuangshuang Shi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Fengyuan Zhuang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chun Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yunfang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
48
|
Lemaigre FP. Molecular mechanisms of biliary development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:103-26. [PMID: 21074731 DOI: 10.1016/b978-0-12-385233-5.00004-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biliary tree drains the bile produced by hepatocytes to the duodenum via a network of intrahepatic and extrahepatic ducts. In the embryo, the intrahepatic ducts are formed near the branches of the portal vein and derive from the liver precursor cells of the hepatic bud, whereas the extrahepatic ducts directly emerge from the primitive gut. Despite this dual origin, intrahepatic and extrahepatic ducts are lined by a common cell type, the cholangiocyte. In this chapter, we describe how bile ducts are formed and cholangiocytes differentiate, and focus on the regulation of these processes by intercellular signaling pathways and by transcriptional and posttranscriptional mechanisms.
Collapse
|
49
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
50
|
Abstract
Transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-beta/BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-beta/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-beta/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xing Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|