1
|
Okafor AE, Lin X, Situ C, Wei X, Xiang Y, Wei X, Wu Z, Diao Y. Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state. J Cell Biol 2023; 222:e202211073. [PMID: 37382627 PMCID: PMC10309185 DOI: 10.1083/jcb.202211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.
Collapse
Affiliation(s)
- Arinze E. Okafor
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Chenghao Situ
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Xiuqing Wei
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Mashinchian O, De Franceschi F, Nassiri S, Michaud J, Migliavacca E, Aouad P, Metairon S, Pruvost S, Karaz S, Fabre P, Molina T, Stuelsatz P, Hegde N, Le Moal E, Dammone G, Dumont NA, Lutolf MP, Feige JN, Bentzinger CF. An engineered multicellular stem cell niche for the 3D derivation of human myogenic progenitors from iPSCs. EMBO J 2022; 41:e110655. [PMID: 35703167 DOI: 10.15252/embj.2022110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Patrick Aouad
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Paul Fabre
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Thomas Molina
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Pascal Stuelsatz
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nagabhooshan Hegde
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Emmeran Le Moal
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriele Dammone
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nicolas A Dumont
- Faculty of Medicine, CHU Sainte-Justine Research Center, School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Florian Bentzinger
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Cloning and characterization of a cDNA encoding a paired box protein, PAX7, from black sea bream, Acanthopagrus schlegelii. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Mishra S, Sevak JK, Das A, Arimbasseri GA, Bhatnagar S, Gopinath SD. Umbilical cord tissue is a robust source for mesenchymal stem cells with enhanced myogenic differentiation potential compared to cord blood. Sci Rep 2020; 10:18978. [PMID: 33149204 PMCID: PMC7642376 DOI: 10.1038/s41598-020-75102-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023] Open
Abstract
Differentiation of mesenchymal stem cells (MSCs) derived from two different sources of fetal tissues such as umbilical cord blood (UCB) and tissue (UCT) into skeletal muscle have remained underexplored. Here, we present a comparative analysis of UCB and UCT MSCs, in terms of surface markers, proliferation and senescence marker expression. We find that CD45-CD34- MSCs obtained from UCT and UCB of term births display differences in the combinatorial expression of key MSC markers CD105 and CD90. Importantly, UCT MSCs display greater yield, higher purity, shorter culture time, and lower rates of senescence in culture compared to UCB MSCs. Using a robust myogenic differentiation protocol, we show that UCT MSCs differentiate more robustly into muscle than UCB MSCs by transcriptomic sequencing and specific myogenic markers. Functional assays reveal that CD90, and not CD105 expression promotes myogenic differentiation in MSCs and could explain the enhanced myogenic potential of UCT MSCs. These results suggest that in comparison to large volumes of UCB that are routinely used to obtain MSCs and with limited success, UCT is a more reliable, robust, and convenient source of MSCs to derive cells of the myogenic lineage for both therapeutic purposes and increasing our understanding of developmental processes.
Collapse
Affiliation(s)
- Shivangi Mishra
- Pediatric Biology Center, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, 121001, India
| | - Jayesh Kumar Sevak
- Pediatric Biology Center, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, 121001, India
| | - Anamica Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Shinjini Bhatnagar
- Pediatric Biology Center, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, 121001, India
| | - Suchitra D Gopinath
- Pediatric Biology Center, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, 121001, India.
| |
Collapse
|
5
|
Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PLoS One 2020; 15:e0228072. [PMID: 31961902 PMCID: PMC6974172 DOI: 10.1371/journal.pone.0228072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that abolish the expression of dystrophin protein. Dogs with the genetic homologue, golden retriever muscular dystrophy dog (GRMD), have a splice site mutation that leads to skipping of exon 7 and a stop codon in the DMD transcript. Gene editing via homology-directed repair (HDR) has been used in the mdx mouse model of DMD but not in GRMD. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector nucleases (TALEN) to restore dystrophin expression via HDR in myoblasts/myotubes and later via intramuscular injection of GRMD dogs. In vitro, DNA and RNA were successfully corrected but dystrophin protein was not translated. With intramuscular injection of two different guide arms, sgRNA A and B, there was mRNA expression and Sanger sequencing confirmed inclusion of exon 7 for all treatments. On Western blot analysis, protein expression of up to 6% of normal levels was seen in two dogs injected with sgRNA B and up to 16% of normal in one dog treated with sgRNA A. TALEN did not restore any dystrophin expression. While there were no adverse effects, clear benefits were not seen on histopathologic analysis, immunofluorescence microscopy, and force measurements. Based on these results, methods must be modified to increase the efficiency of HDR-mediated gene repair and protein expression.
Collapse
|
6
|
Kotliar D, Veres A, Nagy MA, Tabrizi S, Hodis E, Melton DA, Sabeti PC. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. eLife 2019; 8:e43803. [PMID: 31282856 PMCID: PMC6639075 DOI: 10.7554/elife.43803] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/07/2019] [Indexed: 12/28/2022] Open
Abstract
Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell's expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here, we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Adrian Veres
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Harvard Stem Cell InstituteHarvard UniversityCambridgeUnited States
| | - M Aurel Nagy
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | | | - Eran Hodis
- Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUnited States
- Biophysics ProgramHarvard UniversityCambridgeUnited States
| | - Douglas A Melton
- Harvard Stem Cell InstituteHarvard UniversityCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Pardis C Sabeti
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
7
|
Kulikova B, Kovac M, Bauer M, Tomkova M, Olexikova L, Vasicek J, Balazi A, Makarevich AV, Chrenek P. Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Acta Histochem 2019; 121:491-499. [PMID: 31005288 DOI: 10.1016/j.acthis.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
This work aimed to evaluate the effect of two distinct cryopreservation procedures - conventional slow-freezing and vitrification, on survivability and mesenchymal marker expression stability of rabbit amniotic fluid-derived mesenchymal stem cells (rAF-MSCs). Cells at passage 2 were slowly frozen, using 10% of dimethylsulfoxide, or vitrified, using 40% of ethylene glycol, 0.5 M sucrose and 18% Ficoll 70. After three months storage in liquid nitrogen, viability, chromosomal stability, ultrastructure, surface and intracellular marker expression and differentiation potential of cells were evaluated immediately post-thawing/warming and after additional culture for 48-72 h. Our results showed decreased (P ≤ 0.05) viability of cells post-thawing/warming. However, after additional culture, the viability was similar to those in fresh counterparts in both cryopreserved groups. Increase (P ≤ 0.05) in the population doubling time of vitrified cells was observed, while doubling time of slow-frozen cells remained similar to non-cryopreserved cells. No changes in karyotype (chromosomal numbers) were observed in frozen/vitrified AF-MSCs, and histological staining confirmed similar differentiation potential of fresh and frozen/vitrified cells. Analysis of mesenchymal marker expression by qPCR showed that both cryopreservation approaches significantly affected expression of CD73 and CD90 surface markers. These changes were not detected using flow cytometry. In summary, the conventional slow-freezing and vitrification are reliable and effective approaches for the cryopreservation of rabbit AF-MSCs. Nevertheless, our study confirmed affected expression of some mesenchymal markers following cryopreservation.
Collapse
Affiliation(s)
- Barbora Kulikova
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Michal Kovac
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Miroslav Bauer
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovak Republic
| | - Maria Tomkova
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lucia Olexikova
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Jaromir Vasicek
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Andrej Balazi
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Alexander V Makarevich
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Peter Chrenek
- Research Institute for Animal Production in Nitra, NAFC, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Faculty of Animal Breeding and Biology, University of Technology and Life Sciences, Al. prof. S. Kaliskiego 7, 85 796 Bydgoszcz, Poland
| |
Collapse
|
8
|
Gazzerro E, Baratto S, Assereto S, Baldassari S, Panicucci C, Raffaghello L, Scudieri P, De Battista D, Fiorillo C, Volpi S, Chaabane L, Malnati M, Messina G, Bruzzone S, Traggiai E, Grassi F, Minetti C, Bruno C. The Danger Signal Extracellular ATP Is Involved in the Immunomediated Damage of α-Sarcoglycan-Deficient Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:354-369. [PMID: 30448410 DOI: 10.1016/j.ajpath.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy; Charité Universität-Experimental and Clinical Research Center, Berlin, Germany.
| | - Serena Baratto
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy
| | - Stefania Assereto
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Baldassari
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy; Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | - Davide De Battista
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Stefano Volpi
- Pediatria II Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Linda Chaabane
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | - Mauro Malnati
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Disease, Ospedale San Raffaele, Milano, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Fabio Grassi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy; Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy.
| |
Collapse
|
9
|
IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Sci Rep 2017; 7:12997. [PMID: 29021612 PMCID: PMC5636823 DOI: 10.1038/s41598-017-13479-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Studies in murine cell lines and in mouse models suggest that IL-15 promotes myogenesis and may protect against the inflammation-mediated skeletal muscle atrophy which occurs in sarcopenia and cachexia. The effects of IL-15 on human skeletal muscle growth and development remain largely uncharacterised. Myogenic cultures were isolated from the skeletal muscle of young and elderly subjects. Myoblasts were differentiated for 8 d, with or without the addition of recombinant cytokines (rIL-15, rTNFα) and an IL-15 receptor neutralising antibody. Although myotubes were 19% thinner in cultures derived from elderly subjects, rIL-15 increased the thickness of myotubes (MTT) from both age groups to a similar extent. Neutralisation of the high-affinity IL-15 receptor binding subunit, IL-15rα in elderly myotubes confirmed that autocrine concentrations of IL-15 also support myogenesis. Co-incubation of differentiating myoblasts with rIL-15 and rTNFα, limited the reduction in MTT and nuclear fusion index (NFI) associated with rTNFα stimulation alone. IL-15rα neutralisation and rTNFα decreased MTT and NFI further. This, coupled with our observation that myotubes secrete IL-15 in response to TNFα stimulation supports the notion that IL-15 serves to mitigate inflammatory skeletal muscle loss. IL-15 may be an effective therapeutic target for the attenuation of inflammation-mediated skeletal muscle atrophy.
Collapse
|
10
|
Jiwlawat S, Lynch E, Glaser J, Smit-Oistad I, Jeffrey J, Van Dyke JM, Suzuki M. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation 2017; 96:70-81. [PMID: 28915407 DOI: 10.1016/j.diff.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/01/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Human induced-pluripotent stem cells (iPSCs) are a promising resource for propagation of myogenic progenitors. Our group recently reported a unique protocol for the derivation of myogenic progenitors directly (without genetic modification) from human pluripotent cells using free-floating spherical culture. Here we expand our previous efforts and attempt to determine how differentiation duration, culture surface coatings, and nutrient supplements in the medium influence progenitor differentiation and formation of skeletal myotubes containing sarcomeric structures. A long differentiation period (over 6 weeks) promoted the differentiation of iPSC-derived myogenic progenitors and subsequent myotube formation. These iPSC-derived myotubes contained representative sarcomeric structures, consisting of organized myosin and actin filaments, and could spontaneously contract. We also found that a bioengineering approach using three-dimensional (3D) artificial muscle constructs could facilitate the formation of elongated myotubes. Lastly, we determined how culture surface coating matrices and different supplements would influence terminal differentiation. While both Matrigel and laminin coatings showed comparable effects on muscle differentiation, B27 serum-free supplement in the differentiation medium significantly enhanced myogenesis compared to horse serum. Our findings support the possibility to create an in vitro model of contractile sarcomeric myofibrils for disease modeling and drug screening to study neuromuscular diseases.
Collapse
Affiliation(s)
- Saowanee Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jennifer Glaser
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Ivy Smit-Oistad
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jeremy Jeffrey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jonathan M Van Dyke
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
11
|
Perroud J, Bernheim L, Frieden M, Koenig S. Distinct roles of NFATc1 and NFATc4 in human primary myoblast differentiation and in the maintenance of reserve cells. J Cell Sci 2017; 130:3083-3093. [PMID: 28760926 DOI: 10.1242/jcs.198978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Ca2+ signaling plays a key role during human myoblast differentiation. Among Ca2+-sensitive pathways, calcineurin is essential for myoblast differentiation and muscle regeneration. Nuclear factor of activated T-cell (NFAT) transcription factors are the major calcineurin targets. We investigated the expression and the role of each NFAT gene during human primary myoblast differentiation. We found that three NFAT isoforms are present, NFATc1, NFATc3 and NFATc4. Importantly, while their mRNA expression increases during differentiation, NFATc1 is more highly expressed in myotubes, whilst NFATc4 is specifically maintained in reserve cells. NFATc3 is present in both cell types, although no specific role during myoblast differentiation was observed. Knockdown of either NFATc1 or NFATc4 affects the differentiation process similarly, by decreasing the expression of late differentiation markers, but impairs myotube formation differently. Whereas NFATc1 knockdown strongly reduced the number and the surface area of myotubes, NFATc4 knockdown increased the surface area of myotubes and reduced the pool of reserve cells. We conclude that NFAT genes have specific roles in myotube formation and in the maintenance of the reserve cell pool during human postnatal myogenesis.
Collapse
Affiliation(s)
- Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Stephane Koenig
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell 2016; 48:533-43. [PMID: 27457384 DOI: 10.1016/j.tice.2016.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 12/26/2022]
Abstract
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sun-Mi Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
13
|
Trapecar M, Kelc R, Gradisnik L, Vogrin M, Rupnik MS. Myogenic progenitors and imaging single-cell flow analysis: a model to study commitment of adult muscle stem cells. J Muscle Res Cell Motil 2014; 35:249-57. [PMID: 25380573 DOI: 10.1007/s10974-014-9398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Research on skeletal muscles suffers from a lack of appropriate human models to study muscle formation and regeneration on the regulatory level of single cells. This hampers both basic understanding and the development of new therapeutic approaches. The use of imaging multicolour flow cytometry and myogenic stem cells can help fill this void by allowing researchers to visualize and quantify the reaction of individual cultured cells to bioactives or other physiological impulses. As proof of concept, we subjected human CD56+ satellite cells to reference bioactives follistatin and Malva sylvestris extracts and then used imaging multicolor flow cytometry to visualize the stepwise activation of myogenic factors MyoD and myogenin in individual cells. This approach enabled us to evaluate the potency of these bioactives to stimulate muscle commitment. To validate this method, we used multi-photon confocal microscopy to confirm the potential of bioactives to stimulate muscle differentiation and expression of desmin. Imaging multicolor flow cytometry revealed statistically significant differences between treated and untreated groups of myogenic progenitors and we propose the utilization of this concept as an integral part of future muscle research strategies.
Collapse
Affiliation(s)
- Martin Trapecar
- Faculty of Medicine, Institute of Physiology, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia,
| | | | | | | | | |
Collapse
|
14
|
Ozeki N, Mogi M, Yamaguchi H, Hiyama T, Kawai R, Hase N, Nakata K, Nakamura H, Kramer RH. Differentiation of human skeletal muscle stem cells into odontoblasts is dependent on induction of α1 integrin expression. J Biol Chem 2014; 289:14380-91. [PMID: 24692545 DOI: 10.1074/jbc.m113.526772] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle stem cells represent an abundant source of autologous cells with potential for regenerative medicine that can be directed to differentiate into multiple lineages including osteoblasts and adipocytes. In the current study, we found that α7 integrin-positive human skeletal muscle stem cells (α7(+)hSMSCs) could differentiate into the odontoblast lineage under specific inductive conditions in response to bone morphogenetic protein-4 (BMP-4). Cell aggregates of FACS-harvested α7(+)hSMSCs were treated in suspension with retinoic acid followed by culture on a gelatin scaffold in the presence of BMP-4. Following this protocol, α7(+)hSMSCs were induced to down-regulate myogenic genes (MYOD and α7 integrin) and up-regulate odontogenic markers including dentin sialophosphoprotein, matrix metalloproteinase-20 (enamelysin), dentin sialoprotein, and alkaline phosphatase but not osteoblastic genes (osteopontin and osteocalcin). Following retinoic acid and gelatin scaffold/BMP-4 treatment, there was a coordinated switch in the integrin expression profile that paralleled odontoblastic differentiation where α1β1 integrin was strongly up-regulated with the attenuation of muscle-specific α7β1 integrin expression. Interestingly, using siRNA knockdown strategies revealed that the differentiation-related expression of the α1 integrin receptor positively regulates the expression of the odontoblastic markers dentin sialophosphoprotein and matrix metalloproteinase-20. These results strongly suggest that the differentiation of α7(+)hSMSCs along the odontogenic lineage is dependent on the concurrent expression of α1 integrin.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan, and
| | - Hideyuki Yamaguchi
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Taiki Hiyama
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Rie Kawai
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Naoko Hase
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Kazuhiko Nakata
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Hiroshi Nakamura
- From the Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan
| | - Randall H Kramer
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
15
|
Bellayr I, Holden K, Mu X, Pan H, Li Y. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:124-141. [PMID: 23329998 PMCID: PMC3544228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle.
Collapse
Affiliation(s)
- Ian Bellayr
- Department of Bioengineering, University of PittsburghPA, USA
| | - Kyle Holden
- Department of Pediatrics, Children’s Hospital of UMPC, University of PittsburghPA, USA
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, University of Pittsburgh, School of MedicinePA, USA
| | - Haiying Pan
- Department of Pediatric Surgery, University of Texas, School of Medicine at HoustonTX, USA
| | - Yong Li
- Department of Pediatric Surgery, University of Texas, School of Medicine at HoustonTX, USA
- The Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine (IMM) at the University of Texas Health Science Center at HoustonTX, USA
| |
Collapse
|
16
|
Mouse and human pluripotent stem cells and the means of their myogenic differentiation. Results Probl Cell Differ 2012; 55:321-56. [PMID: 22918815 DOI: 10.1007/978-3-642-30406-4_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, are an important tool in the studies focusing at the differentiation of various cell types, including skeletal myoblasts. They are also considered as a source of the cells that due to their pluripotent character and availability could be turned into any required tissue and then used in future in regenerative medicine. However, the methods of the derivation of some of cell types from pluripotent cells still need to be perfected. This chapter summarizes the history and current advancements in the derivation and testing of pluripotent stem cells-derived skeletal myoblasts. It focuses at the in vitro methods allowing the differentiation of stem cells grown in monolayer or propagated as embryoid bodies, and also at in vivo tests allowing the verification of the functionality of obtained skeletal myoblasts.
Collapse
|
17
|
Brzoska E, Ciemerych MA, Przewozniak M, Zimowska M. Regulation of Muscle Stem Cells Activation. STEM CELL REGULATORS 2011; 87:239-76. [DOI: 10.1016/b978-0-12-386015-6.00031-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Lindström M, Pedrosa-Domellöf F, Thornell LE. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol 2010; 134:371-85. [PMID: 20878332 PMCID: PMC2954291 DOI: 10.1007/s00418-010-0743-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
Human satellite cells (SCs) are heterogeneous with respect to markers for their identification in the niche between the muscle fibre plasma membrane and its basal lamina. We have previously shown that, in biopsies from highly competitive power lifters, power lifters with long-term use of anabolic steroids and a population of healthy sedentary men, antibodies against the neuronal cell adhesion molecule (NCAM) and the paired box transcription factor Pax7 together label 94% of the SCs, NCAM alone labels 4% and Pax7 alone labels 1%. In the present study, we have further studied these biopsies with four markers related to SC activation and differentiation. Our study unequivocally shows that staining for MyoD and myogenin are present in nuclei of SCs and of myoblasts and myotubes in areas of muscle fibre regeneration. Staining for c-Met was observed in a proportion of Pax7+ SCs. However, widespread labelling of the sarcolemma precluded the quantification of c-Met+/Pax7+ SCs and the use of c-Met as a reliable SC marker. Pax7+ SCs labelled by anti-Delta like1 (Dlk1) were present in all samples but in variable proportions, whereas muscle progenitor cells related to repair were Dlk1−. Staining for Dlk1 was also observed in Pax7− interstitial cells and in the cytoplasm of some small muscle fibres. Interestingly, the proportion of Dlk1+/Pax7+ SCs was significantly different between the groups of power lifters. Thus, our study confirms that human SCs show marked heterogeneity and this is discussed in terms of SC activation, myonuclei turnover, muscle fibre growth and muscle fibre damage and repair.
Collapse
Affiliation(s)
- Mona Lindström
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Fatima Pedrosa-Domellöf
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Lars-Eric Thornell
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|