1
|
Holland LZ, Holland ND. The invertebrate chordate amphioxus gives clues to vertebrate origins. Curr Top Dev Biol 2022; 147:563-594. [PMID: 35337463 DOI: 10.1016/bs.ctdb.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Amphioxus (cepholochordates) have long been used to infer how the vertebrates evolved from their invertebrate ancestors. However, some of the body part homologies between amphioxus and vertebrates have been controversial. This is not surprising as the amphioxus and vertebrate lineages separated half a billion years ago-plenty of time for independent loss and independent gain of features. The development of new techniques in the late 20th and early 21st centuries including transmission electron microscopy and serial blockface scanning electron microscopy in combination with in situ hybridization and immunocytochemistry to reveal spatio-temporal patterns of gene expression and gene products have greatly strengthened inference of some homologies (like those between regions of the central nervous system), although others (like nephridia) still need further support. These major advances in establishing homologies between amphioxus and vertebrates, together with strong support from comparative genomics, have firmly established amphioxus as a stand-in or model for the ancestral vertebrate.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States.
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Makrides N, Wang Q, Tao C, Schwartz S, Zhang X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol 2022; 12:210265. [PMID: 35016551 PMCID: PMC8753161 DOI: 10.1098/rsob.210265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A central question in development biology is how a limited set of signalling pathways can instruct unlimited diversity of multicellular organisms. In this review, we use three ocular tissues as models of increasing complexity to present the astounding versatility of fibroblast growth factor (FGF) signalling. In the lacrimal gland, we highlight the specificity of FGF signalling in a one-dimensional model of budding morphogenesis. In the lens, we showcase the dynamics of FGF signalling in altering functional outcomes in a two-dimensional space. In the retina, we present the prolific utilization of FGF signalling from three-dimensional development to homeostasis. These examples not only shed light on the cellular basis for the perfection and complexity of ocular development, but also serve as paradigms for the diversity of FGF signalling.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Qian Wang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel Schwartz
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xin Zhang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Okutomo K, Fujino N, Yamada M, Saito T, Ono Y, Okada Y, Ichinose M, Sugiura H. Increased LHX9 expression in alveolar epithelial type 2 cells of patients with chronic obstructive pulmonary disease. Respir Investig 2021; 60:119-128. [PMID: 34548271 DOI: 10.1016/j.resinv.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alveolar epithelial type 2 (AT2) cells serve as stem cells in alveolar epithelium and are assumed to lose their stem cell function in the lungs of chronic obstructive pulmonary disease (COPD). Although we previously reported that LHX9 mRNA expression was up-regulated in AT2 cells of COPD lung tissues, it is yet to be elucidated how LHX9 is associated with the vulnerability of AT2 cells in COPD. METHODS AT2 cells were isolated from lung tissues of 10 non-COPD subjects and 11 COPD patients. LHX9 mRNA expression was determined by quantitative RT-PCR. To identify up-stream molecules, an alveolar epithelial cell line A549 was exposed to pro-inflammatory cytokines in vitro. siRNA-mediated Lhx9 knockdown was performed to determine how Lhx9 affected the cellular viability and the cell-division cycle. RESULTS LHX9 mRNA expression was increased in AT2 cells from COPD lung tissues, compared to those from non-COPD tissues. The airflow obstruction was independently correlated with the increase in LHX9 expression. Among several pro-inflammatory cytokines, interferon-γ was a strong inducer of LHX9 expression in A549 cells. Lhx9 was involved in the increased susceptibility to serum starvation-induced death of A549 cells. CONCLUSIONS Our data suggest that IFN-γ predominantly increases the LHX9 expression which enhances the susceptibility to cell death. Considering the independent association of the increased LHX9 expression in AT2 cells with airflow obstruction, the IFN-γ-Lhx9 axis might contribute to the vulnerability of AT2 cells in the lungs of COPD patients.
Collapse
Affiliation(s)
- Koji Okutomo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan
| | - Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan
| | - Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, 980 8575, Japan
| | | | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980 8574, Japan
| |
Collapse
|
4
|
Guo R, Li F, Lu M, Ge K, Gan L, Sheng D. LIM Homeobox 9 knockdown by morpholino does not affect zebrafish retinal development. Biol Open 2021; 10:bio.056382. [PMID: 33579692 PMCID: PMC7969587 DOI: 10.1242/bio.056382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
LIM homeobox 9 (Lhx9) is a member of the LIM homeodomain transcription factor family, which expresses and functions in various vertebrate tissues, such as the gonads and pineal gland. Previous studies on lhx9 in zebrafish have mainly focused on the brain. However, little is known about the expression pattern of lhx9 during embryogenesis. Here, we detected lhx9 expression in zebrafish embryos using whole-mount in situ hybridization and found lhx9 expressed in heart, pectoral fin, and retina during their development in zebrafish. We then detailed the expression of lhx9 in retinal development. To further investigate the function of Lhx9 in retinogenesis, we performed morpholino (MO) knockdown experiments and found that upon lhx9 knockdown by MO, larvae presented normal eye development, retinal neural development, differentiation, proliferation, apoptosis, and responses to light stimulus. We not only elaborated the expression pattern of lhx9 in zebrafish embryogenesis, but we also demonstrated that lhx9 knockdown by morpholino does not affect the zebrafish retinal development, and our study provides data for further understanding of the role of Lhx9 in zebrafish retinal development. Summary:lhx9 is expressed in the development of the zebrafish heart, pectoral fin, and retina, but lhx9 knockdown by morpholino does not affect zebrafish retinal development.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China.,College of Life Sciences, Zhejiang University, Hangzhou 310013 Zhejiang, China
| | - Fei Li
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| | - Minxia Lu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| | - Kangkang Ge
- Hangzhou jingbai biotechnology Co, LTD., Hangzhou 310004 Zhejiang, China
| | - Lin Gan
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China .,College of Life Sciences, Zhejiang University, Hangzhou 310013 Zhejiang, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| |
Collapse
|
5
|
Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a. Neuroscience 2020; 434:66-82. [PMID: 32200077 DOI: 10.1016/j.neuroscience.2020.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. Extrinsic Fibroblast Growth Factor (Fgf) signals are known to help coordinate the development of the brain by regulating gene expression. Here, we propose Lhx2/9 and Etv1 as potential downstream effectors of Fgf signalling to regulate slit1 and sema3a expression in the Xenopus forebrain. We find that lhx2/9 and etv1 mRNAs are expressed complementary to and within slit1/sema3a expression domains, respectively. Our data indicate that Lhx2 functions as an indirect repressor in that lhx2 overexpression within the forebrain downregulates the mRNA expression of both guidance genes, and in vitro lhx2/9 overexpression decreases the activity of slit1 and sema3a promoters. The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.
Collapse
|
6
|
Li SQ, Tu C, Wan L, Chen RQ, Duan ZX, Ren XL, Li ZH. FGF-induced LHX9 regulates the progression and metastasis of osteosarcoma via FRS2/TGF-β/β-catenin pathway. Cell Div 2019; 14:13. [PMID: 31788020 PMCID: PMC6876112 DOI: 10.1186/s13008-019-0056-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023] Open
Abstract
Background Fibroblast growth factor (FGF) and tumor growth factor-β (TGFβ) have emerged as pivotal regulators during the progression of osteosarcoma (OS). LHX9 is one crucial transcription factor controlled by FGF, however, its function in OS has not been investigated yet. Methods The expression of LHX9, FRS2, BMP4, TGF-beta R1, SMAD2, beta-catenin and metastasis-related proteins was measured by real-time quantitative PCR (RT-qPCR) and Western blot. CCK-8 assay and colony formation assay were employed to determine the proliferation of OS cells, while scratch wound healing assay and transwell assay were used to evaluate their migration and invasion, respectively. In vivo tumor growth and metastasis were determined by subcutaneous or intravenous injection of OS cells into nude mice. Results LHX9 expression was evidently up-regulated in OS tumor tissues and cell lines. Knockdown of LHX9 impaired the proliferation, migration, invasion and metastasis of OS cells. Mechanistically, LHX9 silencing led to the down-regulation of BMP-4, β-catenin and metastasis-related proteins, which was also observed in beta-catenin knockdown OS cells. By contrast, FRS2 knockdown conduced to the up-regulation of LHX9, BMP4, β-catenin and TGF-βR1, while TGF-beta inhibition repressed the expression of LHX9 and metastasis-related proteins. Additionally, let-7c modulates LHX9 and metastasis-related proteins by suppressing TGF-beta R1 expression on transcriptional level. Conclusions This study revealed LHX9 was essential for the proliferation, migration, invasion, and metastasis of OS cells via FGF and TGF-β/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Shuang-Qing Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Chao Tu
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Lu Wan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Rui-Qi Chen
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Xi Duan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Xiao-Lei Ren
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Hong Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| |
Collapse
|
7
|
The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. eNeuro 2019; 6:eN-NWR-0086-19. [PMID: 30993182 PMCID: PMC6464512 DOI: 10.1523/eneuro.0086-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.
Collapse
|
8
|
Yang JLJ, Bertolesi GE, Hehr CL, Johnston J, McFarlane S. Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1. Cell Mol Life Sci 2018; 75:3649-3661. [PMID: 29705951 PMCID: PMC11105281 DOI: 10.1007/s00018-018-2824-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Axons sense molecular cues in their environment to arrive at their post-synaptic targets. While many of the molecular cues have been identified, the mechanisms that regulate their spatiotemporal expression remain elusive. We examined here the transcriptional regulation of the guidance gene slit1 both in vitro and in vivo by specific fibroblast growth factor receptors (Fgfrs). We identified an Fgf-responsive 2.3 kb slit1 promoter sequence that recapitulates spatiotemporal endogenous expression in the neural tube and eye of Xenopus embryos. We found that signaling through Fgfr1 is the main regulator of slit1 expression both in vitro in A6 kidney epithelial cells, and in the Xenopus forebrain, even when other Fgfr subtypes are present in cells. These data argue that a specific signaling pathway downstream of Fgfr1 controls in a cell-autonomous manner slit1 forebrain expression and are novel in identifying a specific growth factor receptor for in vivo control of the expression of a key embryonic axon guidance cue.
Collapse
Affiliation(s)
- Jung-Lynn Jonathan Yang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Jillian Johnston
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Sefton EM, Bhullar BAS, Mohaddes Z, Hanken J. Evolution of the head-trunk interface in tetrapod vertebrates. eLife 2016; 5:e09972. [PMID: 27090084 PMCID: PMC4841772 DOI: 10.7554/elife.09972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States.,Department of Geology and Geophysics, Yale University, New Haven, United States.,Yale Peabody Museum of Natural History, Yale University, New Haven, United States
| | - Zahra Mohaddes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| |
Collapse
|
10
|
Atkinson-Leadbeater K, Hehr CL, Mcfarlane S. Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 2014; 243:663-75. [PMID: 24478172 DOI: 10.1002/dvdy.24113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.
Collapse
|
11
|
Expression of LIM-homeodomain transcription factors in the developing and mature mouse retina. Gene Expr Patterns 2013; 14:1-8. [PMID: 24333658 DOI: 10.1016/j.gep.2013.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023]
Abstract
LIM-homeodomain (LIM-HD) transcription factors have been extensively studied for their role in the development of the central nervous system. Their function is key to several developmental events like cell proliferation, differentiation and subtype specification. However, their roles in retinal neurogenesis remain largely unknown. Here we report a detailed expression study of LIM-HD transcription factors LHX9 and LHX2, LHX3 and LHX4, and LHX6 in the developing and mature mouse retina using immunohistochemistry and in situ hybridization techniques. We show that LHX9 is expressed during the early stages of development in the retinal ganglion cell layer and the inner nuclear layer. We also show that LHX9 is expressed in a subset of amacrine cells in the adult retina. LHX2 is known to be expressed in retinal progenitor cells during development and in Müller glial cells and a subset of amacrine cells in the adult retina. We found that the LHX2 subset of amacrine cells is not cholinergic and that a very few of LHX2 amacrine cells express calretinin. LHX3 and LHX4 are expressed in a subset of bipolar cells in the adult retina. LHX6 is expressed in cells in the ganglion cell layer and the neuroblast layer starting at embryonic stage 13.5 (E13.5) and continues to be expressed in cells in the ganglion cell layer and inner nuclear layer, postnatally, suggesting its likely expression in amacrine cells or a subset thereof. Taken together, our comprehensive assay of expression patterns of LIM-HD transcription factors during mouse retinal development will help further studies elucidating their biological functions in the differentiation of retinal cell subtypes.
Collapse
|
12
|
Willardsen M, Hutcheson DA, Moore KB, Vetter ML. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech Dev 2013; 131:57-67. [PMID: 24219979 DOI: 10.1016/j.mod.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/27/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor signaling plays a significant role in the developing eye, regulating both patterning and neurogenesis. Members of the Pea3/Etv4-subfamily of ETS-domain transcription factors (Etv1, Etv4, and Etv5) are transcriptional activators that are downstream targets of FGF/MAPK signaling, but whether they are required for eye development is unknown. We show that in the developing Xenopus laevis retina, etv1 is transiently expressed at the onset of retinal neurogenesis. We found that etv1 is not required for eye specification, but is required for the expression of atonal-related proneural bHLH transcription factors, and is also required for retinal neuron differentiation. Using transgenic reporters we show that the distal atoh7 enhancer, which is required for the initiation of atoh7 expression in the Xenopus retina, is responsive to both FGF signaling and etv1 expression. Thus, we conclude that Etv1 acts downstream of FGF signaling to regulate the initiation of neurogenesis in the Xenopus retina.
Collapse
Affiliation(s)
- Minde Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kathryn B Moore
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
13
|
Pottin K, Hinaux H, Rétaux S. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 2011; 138:2467-76. [PMID: 21610028 DOI: 10.1242/dev.054106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cavefish morph of the Mexican tetra (Astyanax mexicanus) is blind at adult stage, although an eye that includes a retina and a lens develops during embryogenesis. There are, however, two major defects in cavefish eye development. One is lens apoptosis, a phenomenon that is indirectly linked to the expansion of ventral midline sonic hedgehog (Shh) expression during gastrulation and that induces eye degeneration. The other is the lack of the ventral quadrant of the retina. Here, we show that such ventralisation is not extended to the entire forebrain because fibroblast growth factor 8 (Fgf8), which is expressed in the forebrain rostral signalling centre, is activated 2 hours earlier in cavefish embryos than in their surface fish counterparts, in response to stronger Shh signalling in cavefish. We also show that neural plate patterning and morphogenesis are modified in cavefish, as assessed by Lhx2 and Lhx9 expression. Inhibition of Fgf receptor signalling in cavefish with SU5402 during gastrulation/early neurulation mimics the typical surface fish phenotype for both Shh and Lhx2/9 gene expression. Fate-mapping experiments show that posterior medial cells of the anterior neural plate, which lack Lhx2 expression in cavefish, contribute to the ventral quadrant of the retina in surface fish, whereas they contribute to the hypothalamus in cavefish. Furthermore, when Lhx2 expression is rescued in cavefish after SU5402 treatment, the ventral quadrant of the retina is also rescued. We propose that increased Shh signalling in cavefish causes earlier Fgf8 expression, a crucial heterochrony that is responsible for Lhx2 expression and retina morphogenesis defect.
Collapse
Affiliation(s)
- Karen Pottin
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 NeD, CNRS, Institut Alfred Fessard, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
14
|
Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 2010; 30:685-93. [PMID: 20071533 DOI: 10.1523/jneurosci.4165-09.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
Collapse
|