1
|
Li P, Wei X, Zi Q, Qu X, He C, Xiao B, Guo S. Single-nucleus RNA sequencing reveals cell types, genes, and regulatory factors influencing melanogenesis in the breast muscle of Xuefeng black-bone chicken. Poult Sci 2024; 103:104259. [PMID: 39278114 PMCID: PMC11419817 DOI: 10.1016/j.psj.2024.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
The black-bone chicken, known for its high melanin content, holds significant economic value due to this unique trait. Particularly notable is the prominent melanin deposition observed in its breast muscle. However, the molecular mechanisms governing melanin synthesis and deposition in the breast muscle of black-bone chickens remain largely unknown. This study employed a single-nucleus transcriptome assay to identify genes associated with melanin deposition in the breast muscle of black-bone chickens, which are presumed to influence pigmentation levels. A comprehensive analysis of the nuclear transcriptome was conducted on the breast muscle of Xuefeng black-bone chickens, encompassing 18 distinct cell types, including melanocytes. Our findings revealed that STIMATE, LRRC7, ENSGALG00000049990, and GLDC play pivotal regulatory roles in melanin deposition within the breast muscle. Further exploration into the molecular mechanisms unveiled transcription factors and protein interactions suggesting that RARB, KLF15, and PRDM4 may be crucial regulators of melanin accumulation in the breast muscle. Additionally, HPGDS, GSTO1, and CYP1B1 may modulate melanin production and deposition in the breast muscle by influencing melanocyte metabolism. Our findings also suggest that melanocyte function in the breast muscle may be intertwined with intercellular signaling pathways such as PTPRK-WNT5A, NOTCH1-JAG1, IGF1R-IGF1, IDE-GCG, and ROR2-WNT5A. Leveraging advanced snRNA-seq technology, we generated a comprehensive single-cell nuclear transcriptome atlas of the breast muscle of Xuefeng black-bone chickens. This facilitated the identification of candidate genes, regulatory factors, and cellular signals potentially influencing melanin deposition and melanocyte function. Overall, our study provides crucial insights into the molecular basis of melanin deposition in chicken breast muscle, laying the groundwork for future breeding programs aimed at enhancing black-bone chicken cultivation.
Collapse
Affiliation(s)
- Peng Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xu Wei
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Qiongtao Zi
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Hunan, 418200, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China.
| |
Collapse
|
2
|
Merta H, Isogai T, Paul B, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577043. [PMID: 38328045 PMCID: PMC10849733 DOI: 10.1101/2024.01.24.577043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knock-in technologies, here we map the proteomic landscape of the human ER and nuclear envelope. Spatial proteomics reveals enrichments of proteins into ER tubules, sheets, and nuclear envelope. We uncover an ER-enriched actin-binding protein, Calmin (CLMN), and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. CLMN depletion perturbs focal adhesion disassembly, actin dynamics, and cell movement. Mechanistically, CLMN-depleted cells also exhibit defects in calcium signaling near ER-actin interfaces, suggesting CLMN promotes calcium signaling near adhesions to facilitate their disassembly. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
3
|
Chen J, Wu Z, Chen R, Huang Z, Han X, Qiao R, Wang K, Yang F, Li XJ, Li XL. Identification of Genomic Regions and Candidate Genes for Litter Traits in French Large White Pigs Using Genome-Wide Association Studies. Animals (Basel) 2022; 12:ani12121584. [PMID: 35739920 PMCID: PMC9219640 DOI: 10.3390/ani12121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The reproductive traits of sows are one of the important economic traits in pig production, and their performance directly affects the economic benefits of the entire pig industry. In this study, a total of 895 French Large White pigs were genotyped by GeneSeek Porcine 50K SNP Beadchip and four phenotypic traits of 1407 pigs were recorded, including total number born (TNB), number born alive (NBA), number healthy piglets (NHP) and litter weight born alive (LWB). To identify genomic regions and genes for these traits, we used two approaches: a single-locus genome-wide association study (GWAS) and a single-step GWAS (ssGWAS). Overall, a total of five SNPs and 36 genomic regions were identified by single-locus GWAS and ssGWAS, respectively. Notably, fourof all five significant SNPs were located in 10.72–11.06 Mb on chromosome 7, were also identified by ssGWAS. These regions explained the highest or second highest genetic variance in the TNB, NBA and NHP traits and harbor the protein coding gene ENSSSCG00000042180. In addition, several candidate genes associated with litter traits were identified, including JARID2, PDIA6, FLRT2 and DICER1. Overall, these novel results reflect the polygenic genetic architecture of the litter traits and provide a theoretical reference for the following implementation of molecular breeding.
Collapse
|
4
|
Wu Y, Liu CP, Xiang C, Xiang KF. Potential Significance and Clinical Value Explorations of Calmin (CLMN) in Breast Invasive Carcinoma. Int J Gen Med 2021; 14:5549-5561. [PMID: 34531680 PMCID: PMC8439628 DOI: 10.2147/ijgm.s326960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Function of calmin (CLMN) was rarely reported in human diseases, especially in tumor. Present study initially assessed the significance of CLMN in breast invasive carcinoma (BRCA). Methods Expressions of CLMN containing mRNA and protein in BRCA was firstly assessed, and association of CLMN mRNA expression with clinical phenotypes of BRCA patients was analyzed as well. Prognostic value of CLMN in BRCA was subsequently predicted based on the clinical characteristics of patients. Finally, the potential biological function associated with CLMN involved in BRCA was revealed. Results (1) The mRNA expression of CLMN was lower in BRCA compared with that in normal patients (P<0.001). However, result of CLMN total protein expression was opposite (P<0.05). (2) The mRNA expression of CLMN was statistically associated with BRCA patient’s age, gender, PR status, ER status, histological type, tumor stage, copy number, and methylation level (all P<0.05). (3) Compared with low expression group, high expression of CLMN was conducive to the overall survival of BRCA patients (P=0.0011). Detailed, survival difference between CLMN high and low expression groups was observed in patients with stage 1 (P=0.0250), positive ER status (P=0.0042), negative HER status (P=0.0433), luminal A (P=0.0065), luminal B (P=0.0123) and positive lymph node status (P=0.0069). Pathway analysis suggested that CLMN mainly participated in cell cycle process (P<0.05) and exerted inhibition effect on the cell cycle involved in BRCA (P<0.05). Conclusion CLMN mRNA high expression prolonged the survival time of patients and caused a favorable prognosis. The positive function of CLMN in BRCA required further investigation in future work.
Collapse
Affiliation(s)
- Yan Wu
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hubei, 430019, Wuhan, People's Republic of China
| | - Chun-Ping Liu
- Department of Thyroid and Breast Surgery, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, People's Republic of China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Kai-Fang Xiang
- Department of Thyroid and Breast Surgery, The Union Jiangnan Hospital, Huazhong University of Science and Technology, Wuhan, 430200, Hubei, People's Republic of China
| |
Collapse
|
5
|
Küçükdoğru R, Türkez H, Arslan ME, Tozlu ÖÖ, Sönmez E, Mardinoğlu A, Cacciatore I, Di Stefano A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson's disease model against MPP+ induced apoptosis. Metab Brain Dis 2020; 35:947-957. [PMID: 32215836 DOI: 10.1007/s11011-020-00559-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is one of the most aggressive neurodegenerative diseases and characterized by the loss of dopamine-sensitive neurons in the substantia nigra region of the brain. There is no any definitive treatment to completely cure PD and existing treatments can only ease the symptoms of the disease. Boron nitride nanoparticles have been extensively studied in nano-biological studies and researches showed that it can be a promising candidate for PD treatment with its biologically active unique properties. In the present study, it was aimed to investigate ameliorative effects of hexagonal boron nitride nanoparticles (hBNs) against toxicity of 1-methyl-4-phenylpyridinium (MPP+) in experimental PD model. Experimental PD model was constituted by application of MPP+ to differentiated pluripotent human embryonal carcinoma cell (Ntera-2, NT-2) culture in wide range of concentrations (0.62 to 2 mM). Neuroprotective activity of hBNs against MPP+ toxicity was determined by cell viability assays including MTT and LDH release. Oxidative alterations by hBNs application in PD cell culture model were investigated using total antioxidant capacity (TAC) and total oxidant status (TOS) tests. The impacts of hBNs and MPP+ on nuclear integrity were analyzed by Hoechst 33258 fluorescent staining method. Acetylcholinesterase (AChE) enzyme activities were determined by a colorimetric assay towards to hBNs treatment. Cell death mechanisms caused by hBNs and MPP+ exposure was investigated by flow cytometry analysis. Experimental results showed that application of hBNs increased cell viability in PD model against MPP+ application. TAS and TOS analysis were determined that antioxidant capacity elevated after hBNs applications while oxidant levels were reduced. Furthermore, flow cytometric analysis executed that MPP+ induced apoptosis was prevented significantly (p < 0.05) after application with hBNs. In a conclusion, the obtained results indicated that hBNs have a huge potential against MPP+ toxicity and can be used in PD treatment as novel neuroprotective agent and drug delivery system.
Collapse
Affiliation(s)
- Recep Küçükdoğru
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Mehmet Enes Arslan
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye.
| | - Özlem Özdemir Tozlu
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Erdal Sönmez
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Science for Life Laboratory, KTH - Royal Institute of Technology, SE-17121, Stockholm, Sweden
| | - Ivana Cacciatore
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | | |
Collapse
|
6
|
Mangaru Z, Salem E, Sherman M, Van Dine SE, Bhambri A, Brumberg JC, Richfield EK, Gabel LA, Ramos RL. Neuronal migration defect of the developing cerebellar vermis in substrains of C57BL/6 mice: cytoarchitecture and prevalence of molecular layer heterotopia. Dev Neurosci 2013; 35:28-39. [PMID: 23428637 DOI: 10.1159/000346368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Abnormal development of the cerebellum is often associated with disorders of movement, postural control, and motor learning. Rodent models are widely used to study normal and abnormal cerebellar development and have revealed the roles of many important genetic and environmental factors. In the present report we describe the prevalence and cytoarchitecture of molecular-layer heterotopia, a malformation of neuronal migration, in the cerebellar vermis of C57BL/6 mice and closely-related strains. In particular, we found a diverse number of cell-types affected by these malformations including Purkinje cells, granule cells, inhibitory interneurons (GABAergic and glycinergic), and glia. Heterotopia were not observed in a sample of wild-derived mice, outbred mice, or inbred mice not closely related to C57BL/6 mice. These data are relevant to the use of C57BL/6 mice as models in the study of brain and behavior relationships and provide greater understanding of human cerebellar dysplasia.
Collapse
Affiliation(s)
- Zareema Mangaru
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, N.Y., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci 2012; 35:733-41. [PMID: 22959670 DOI: 10.1016/j.tins.2012.08.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
Abstract
In the central nervous system (CNS) the function of retinoic acid, the active metabolite of vitamin A, is best understood from its action in guiding embryonic development; as development comes to completion, retinoic acid signaling declines. However, it is increasingly recognized that this signaling mechanism does not disappear in the adult brain but becomes more regionally focused and takes on new roles. These functions are often tied to processes of neural plasticity whether in the hippocampus, through homeostatic neural plasticity, the olfactory bulb or the hypothalamus. The role of retinoic acid in the control of plastic processes has led to suggestions of its involvement in neural disorders, both degenerative and psychiatric. This review presents a snapshot of developments in these areas over recent years.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | |
Collapse
|
8
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Marzinke MA, Clagett-Dame M. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Exp Cell Res 2011; 318:85-93. [PMID: 22001116 DOI: 10.1016/j.yexcr.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/27/2011] [Accepted: 10/01/2011] [Indexed: 12/22/2022]
Abstract
The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.
Collapse
Affiliation(s)
- Mark A Marzinke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | |
Collapse
|