1
|
Díaz-Hernández ME, Galván-Hernández CI, Marín-Llera JC, Camargo-Sosa K, Bustamante M, Wischin S, Chimal-Monroy J. Activation of the WNT-BMP-FGF Regulatory Network Induces the Onset of Cell Death in Anterior Mesodermal Cells to Establish the ANZ. Front Cell Dev Biol 2021; 9:703836. [PMID: 34820367 PMCID: PMC8606791 DOI: 10.3389/fcell.2021.703836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal control of programmed cell death (PCD) plays a significant role in sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the posterior necrotic zone are two cell death regions associated with digit number reduction. In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling interactions to initiate cell death in the anterior margin of the limb to establish the ANZ. This study demonstrates that in a period of two to 8 h after the inhibition of WNT or FGF signaling or the activation of BMP signaling, cell death was induced in the anterior margin of the limb concomitantly with the regulation of Dkk, Fgf8, and Bmp4 expression. Comparing the gene expression profile between the ANZ and the undifferentiated zone at 22HH and 25HH and between the ANZ of 22HH and 25HH stages correlates with functional programs controlled by the regulatory network FGF, BMP, and WNT signaling in the anterior margin of the limb. This work provides novel insights to recognize a negative feedback loop between FGF8, BMP4, and DKK to control the onset of cell death in the anterior margin of the limb to the establishment of the ANZ.
Collapse
Affiliation(s)
- Martha Elena Díaz-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Claudio Iván Galván-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Karen Camargo-Sosa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Marcia Bustamante
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Sabina Wischin
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| |
Collapse
|
2
|
Strub MD, Gao L, Tan K, McCray PB. Analysis of multiple gene co-expression networks to discover interactions favoring CFTR biogenesis and ΔF508-CFTR rescue. BMC Med Genomics 2021; 14:258. [PMID: 34717611 PMCID: PMC8557508 DOI: 10.1186/s12920-021-01106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We previously reported that expression of a miR-138 mimic or knockdown of SIN3A in primary cultures of cystic fibrosis (CF) airway epithelia increased ΔF508-CFTR mRNA and protein levels, and partially restored CFTR-dependent chloride transport. Global mRNA transcript profiling in ΔF508-CFBE cells treated with miR-138 mimic or SIN3A siRNA identified two genes, SYVN1 and NEDD8, whose inhibition significantly increased ΔF508-CFTR trafficking, maturation, and function. Little is known regarding the dynamic changes in the CFTR gene network during such rescue events. We hypothesized that analysis of condition-specific gene networks from transcriptomic data characterizing ΔF508-CFTR rescue could help identify dynamic gene modules associated with CFTR biogenesis. METHODS We applied a computational method, termed M-module, to analyze multiple gene networks, each of which exhibited differential activity compared to a baseline condition. In doing so, we identified both unique and shared gene pathways across multiple differential networks. To construct differential networks, gene expression data from CFBE cells were divided into three groups: (1) siRNA inhibition of NEDD8 and SYVN1; (2) miR-138 mimic and SIN3A siRNA; and (3) temperature (27 °C for 24 h, 40 °C for 24 h, and 27 °C for 24 h followed by 40 °C for 24 h). RESULTS Interrogation of individual networks (e.g., NEDD8/SYVN1 network), combinations of two networks (e.g., NEDD8/SYVN1 + temperature networks), and all three networks yielded sets of 1-modules, 2-modules, and 3-modules, respectively. Gene ontology analysis revealed significant enrichment of dynamic modules in pathways including translation, protein metabolic/catabolic processes, protein complex assembly, and endocytosis. Candidate CFTR effectors identified in the analysis included CHURC1, GZF1, and RPL15, and siRNA-mediated knockdown of these genes partially restored CFTR-dependent transepithelial chloride current to ΔF508-CFBE cells. CONCLUSIONS The ability of the M-module to identify dynamic modules involved in ΔF508 rescue provides a novel approach for studying CFTR biogenesis and identifying candidate suppressors of ΔF508.
Collapse
Affiliation(s)
- Matthew D Strub
- Department of Pediatrics, University of Iowa, 6320 PBDB, 169 Newton Road, Iowa City, IA, 52242, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52245, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, 6320 PBDB, 169 Newton Road, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52245, USA.
| |
Collapse
|
3
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
4
|
Epifanova E, Salina V, Lajkó D, Textoris-Taube K, Naumann T, Bormuth O, Bormuth I, Horan S, Schaub T, Borisova E, Ambrozkiewicz MC, Tarabykin V, Rosário M. Adhesion dynamics in the neocortex determine the start of migration and the post-migratory orientation of neurons. SCIENCE ADVANCES 2021; 7:eabf1973. [PMID: 34215578 PMCID: PMC11060048 DOI: 10.1126/sciadv.abf1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The neocortex is stereotypically organized into layers of excitatory neurons arranged in a precise parallel orientation. Here we show that dynamic adhesion both preceding and following radial migration is essential for this organization. Neuronal adhesion is regulated by the Mowat-Wilson syndrome-associated transcription factor Zeb2 (Sip1/Zfhx1b) through direct repression of independent adhesion pathways controlled by Neuropilin-1 (Nrp1) and Cadherin-6 (Cdh6). We reveal that to initiate radial migration, neurons must first suppress adhesion to the extracellular matrix. Zeb2 regulates the multipolar stage by transcriptional repression of Nrp1 and thereby downstream inhibition of integrin signaling. Upon completion of migration, neurons undergo an orientation process that is independent of migration. The parallel organization of neurons within the neocortex is controlled by Cdh6 through atypical regulation of integrin signaling via its RGD motif. Our data shed light on the mechanisms that regulate initiation of radial migration and the postmigratory orientation of neurons during neocortical development.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Valentina Salina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Denis Lajkó
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Biochemistry, Core Facility High-Throughput Mass Spectrometry, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Naumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Functional Neuroanatomy, Charitéplatz 1, 10117 Berlin, Germany
| | - Olga Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingo Bormuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephen Horan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ekaterina Borisova
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Mateusz C Ambrozkiewicz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Victor Tarabykin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Marta Rosário
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
5
|
Up-regulated cytotrophoblast DOCK4 contributes to over-invasion in placenta accreta spectrum. Proc Natl Acad Sci U S A 2020; 117:15852-15861. [PMID: 32576693 PMCID: PMC7355036 DOI: 10.1073/pnas.1920776117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The syndrome of cytotrophoblast invasion beyond the normal boundary (in the superficial myometrium) is collectively termed placenta accreta spectrum. The incidence of this condition is rising. However, little is known about the underlying molecular changes. Global transcriptomic profiling of cytotrophoblasts isolated from these cases, as compared to gestational age-matched controls, revealed numerous changes in gene expression involving diverse pathways, including cell signaling, migration, and immune functions. DOCK4 was the most highly up-regulated mRNA in the cases. Mutations in this gene are mechanistically linked to cancer progression. Overexpression of DOCK4 in primary cytotrophoblasts increased their invasiveness. This study provides molecular insights into the pathways driving placenta accreta spectrum and suggests numerous future directions. In humans, a subset of placental cytotrophoblasts (CTBs) invades the uterus and its vasculature, anchoring the pregnancy and ensuring adequate blood flow to the fetus. Appropriate depth is critical. Shallow invasion increases the risk of pregnancy complications, e.g., severe preeclampsia. Overly deep invasion, the hallmark of placenta accreta spectrum (PAS), increases the risk of preterm delivery, hemorrhage, and death. Previously a rare condition, the incidence of PAS has increased to 1:731 pregnancies, likely due to the rise in uterine surgeries (e.g., Cesarean sections). CTBs track along scars deep into the myometrium and beyond. Here we compared the global gene expression patterns of CTBs from PAS cases to gestational age-matched control cells that invaded to the normal depth from preterm birth (PTB) deliveries. The messenger RNA (mRNA) encoding the guanine nucleotide exchange factor, DOCK4, mutations of which promote cancer cell invasion and angiogenesis, was the most highly up-regulated molecule in PAS samples. Overexpression of DOCK4 increased CTB invasiveness, consistent with the PAS phenotype. Also, this analysis identified other genes with significantly altered expression in this disorder, potential biomarkers. These data suggest that CTBs from PAS cases up-regulate a cancer-like proinvasion mechanism, suggesting molecular as well as phenotypic similarities in the two pathologies.
Collapse
|
6
|
Taibi A, Mandavawala KP, Noel J, Okoye EV, Milano CR, Martin BL, Sirotkin HI. Zebrafish churchill regulates developmental gene expression and cell migration. Dev Dyn 2013; 242:614-21. [PMID: 23443939 DOI: 10.1002/dvdy.23958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Regulation of developmental signaling pathways is essential for embryogenesis. The small putative zinc finger protein, Churchill (ChCh) has been implicated in modulation of both TGF-β and FGF signaling. RESULTS We used zinc finger nuclease (ZFN) mediated gene targeting to disrupt the zebrafish chch locus and generate the first chch mutations. Three induced lesions produce frameshift mutations that truncate the protein in the third of five β-strands that comprise the protein. Surprisingly, zygotic and maternal zygotic chch mutants are viable. Mutants have elevated expression of mesodermal markers, but progress normally through early development. chch mutants are sensitive to exogenous Nodal. However, neither misregulation of FGF targets nor sensitivity to exogenous FGF was detected. Finally, chch mutant cells were found to undergo inappropriate migration in cell transplant assays. CONCLUSIONS Together, these results suggest that chch is not essential for survival, but functions to modulate early mesendodermal gene expression and limit cell migration.
Collapse
Affiliation(s)
- Andrew Taibi
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | | | | | | | | | | | | |
Collapse
|