1
|
De O, Rice C, Zulueta-Coarasa T, Fernandez-Gonzalez R, Ward RE. Septate junction proteins are required for cell shape changes, actomyosin reorganization and cell adhesion during dorsal closure in Drosophila. Front Cell Dev Biol 2022; 10:947444. [PMID: 36238688 PMCID: PMC9553006 DOI: 10.3389/fcell.2022.947444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Septate junctions (SJs) serve as occluding barriers in invertebrate epithelia. In Drosophila, at least 30 genes are required for the formation or maintenance of SJs. Interestingly, loss-of-function mutations in core SJ components are embryonic lethal, with defects in developmental events such as head involution and dorsal closure (DC) that occur prior to the formation of a mature SJ, indicating a role for these proteins in mid-embryogenesis independent of their occluding function. To understand this novel function in development, we examined loss-of-function mutations in three core SJ proteins during the process of DC. DC occurs during mid-embryogenesis to seal a dorsal gap in the epidermis following germ band retraction. Closure is driven by contraction of the extraembryonic amnioserosa cells that temporarily cover the dorsal surface and by cell shape changes (elongation) of lateral epidermal cells that bring the contralateral sheets together at the dorsal midline. Using live imaging and examination of fixed tissues, we show that early events in DC occur normally in SJ mutant embryos, but during later closure, coracle, Macroglobulin complement-related and Neurexin-IV mutant embryos exhibit slower rates of closure and display aberrant cells shapes in the dorsolateral epidermis, including dorsoventral length and apical surface area. SJ mutant embryos also show mild defects in actomyosin structures along the leading edge, but laser cutting experiments suggest similar tension and viscoelastic properties in SJ mutant versus wild type epidermis. In a high percentage of SJ mutant embryos, the epidermis tears free from the amnioserosa near the end of DC and live imaging and immunostaining reveal reduced levels of E-cadherin, suggesting that defective adhesion may be responsible for these tears. Supporting this notion, reducing E-cadherin by half significantly enhances the penetrance of DC defects in coracle mutant embryos.
Collapse
Affiliation(s)
- Oindrila De
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | | | | | - Robert E Ward
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
3
|
Drak Is Required for Actomyosin Organization During Drosophila Cellularization. G3-GENES GENOMES GENETICS 2016; 6:819-28. [PMID: 26818071 PMCID: PMC4825652 DOI: 10.1534/g3.115.026401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak's regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization.
Collapse
|
4
|
Hall S, Bone C, Oshima K, Zhang L, McGraw M, Lucas B, Fehon RG, Ward RE. Macroglobulin complement-related encodes a protein required for septate junction organization and paracellular barrier function in Drosophila. Development 2014; 141:889-98. [PMID: 24496625 DOI: 10.1242/dev.102152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polarized epithelia play crucial roles as barriers to the outside environment and enable the formation of specialized compartments for organs to carry out essential functions. Barrier functions are mediated by cellular junctions that line the lateral plasma membrane between cells, principally tight junctions in vertebrates and septate junctions (SJs) in invertebrates. Over the last two decades, more than 20 genes have been identified that function in SJ biogenesis in Drosophila, including those that encode core structural components of the junction such as Neurexin IV, Coracle and several claudins, as well as proteins that facilitate the trafficking of SJ proteins during their assembly. Here we demonstrate that Macroglobulin complement-related (Mcr), a gene previously implicated in innate immunity, plays an essential role during embryonic development in SJ organization and function. We show that Mcr colocalizes with other SJ proteins in mature ectodermally derived epithelial cells, that it shows interdependence with other SJ proteins for SJ localization, and that Mcr mutant epithelia fail to form an effective paracellular barrier. Tissue-specific RNA interference further demonstrates that Mcr is required cell-autonomously for SJ organization. Finally, we show a unique interdependence between Mcr and Nrg for SJ localization that provides new insights into the organization of the SJ. Together, these studies demonstrate that Mcr is a core component of epithelial SJs and also highlight an interesting relationship between innate immunity and epithelial barrier functions.
Collapse
Affiliation(s)
- Sonia Hall
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Panda D, Rose PP, Hanna SL, Gold B, Hopkins KC, Lyde RB, Marks MS, Cherry S. Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus entry. Cell Rep 2013; 5:1737-48. [PMID: 24332855 DOI: 10.1016/j.celrep.2013.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
Alphaviruses are a large class of insect-borne human pathogens and little is known about the host-factor requirements for infection. To identify such factors, we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV), the prototypical alphavirus. We identified a conserved role for SEC61A and valosin-containing protein (VCP) in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss or pharmacological inhibition of these proteins leads to altered NRAMP2 trafficking to lysosomal compartments and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron-imbalance disorders.
Collapse
Affiliation(s)
- Debasis Panda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick P Rose
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheri L Hanna
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randolph B Lyde
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Iwasa A, Halfmann P, Noda T, Oyama M, Kozuka-Hata H, Watanabe S, Shimojima M, Watanabe T, Kawaoka Y. Contribution of Sec61α to the life cycle of Ebola virus. J Infect Dis 2011; 204 Suppl 3:S919-26. [PMID: 21987770 DOI: 10.1093/infdis/jir324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Similar to other viruses, the viral proteins of Ebola virus (EBOV) interact with a variety of host proteins for its replication. Of the 7 structural proteins encoded in the EBOV genome, VP24 is the smallest and is multifunctional. METHODS To identify host factors that interact with VP24 and are required for EBOV replication, we transfected 293 cells with plasmid expressing FLAG- and HA-tagged VP24, immunoprecipitated the host proteins that bound to VP24, and analyzed the immunoprecipitants with use of mass spectrometry. RESULTS Of the 68 candidate host proteins identified, we selected Sec61α because of its similar intracellular localization to that of VP24 (ie, perinuclear region), its involvement in various biological functions, and its roles in pathogenesis, such as type 2 diabetes and hepatosteatosis, and investigated its possible role in the EBOV life cycle. Our results suggest that Sec61α is not involved in EBOV entry, interferon antagonism by VP24, nucleocapsid formation, or budding. However, Sec61α colocalized with VP24 contributed to the ability of VP24 to inhibit EBOV genome transcription and reduced the polymerase activity of EBOV. CONCLUSIONS The present study indicates that Sec61α is a host protein involved in EBOV replication, specifically in EBOV genome transcription and replication.
Collapse
Affiliation(s)
- Ayaka Iwasa
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Ward RE. Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila. Gene Expr Patterns 2010; 11:93-104. [PMID: 20920606 DOI: 10.1016/j.gep.2010.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/29/2022]
Abstract
Nonmuscle myosin II (myosin hereafter) has well-established roles in generating contractile force on actin filaments during morphogenetic processes in all metazoans. Myosin activation is regulated by phosphorylation of the myosin regulatory light chain (MRLC, encoded by spaghettisquash or sqh in Drosophila) first on Ser21 and subsequently on Thr20. These phosphorylation events are positively controlled by a variety of kinases including myosin light chain kinase, Rho kinase, citron kinase, and AMP kinase and are negatively regulated by myosin phosphatase. The activation of myosin is thus highly regulated and likely developmentally controlled. In order to monitor the activity of myosin during development, we have generated antibodies against the monophosphorylated (Sqh1P) and diphosphorylated (Sqh2P) forms of Sqh. We first show that the antibodies are highly specific. We then used these antibodies to monitor myosin activation in wild type Drosophila tissues. Interestingly, Sqh1P and Sqh2P show distinct patterns of expression in embryos. Sqh1P is expressed nearly ubiquitously and outlines cells consistent with a junctional localization, whereas Sqh2P is strongly expressed on the apical surfaces and in filopodia of tissues undergoing extensive cell shape change or cell movements including the invaginating fore- and hindgut, the invaginating tracheal system, the dorsal pouch and the dorsal most row of epidermal (DME) cells during dorsal closure. In imaginal discs, Sqh1P predominantly localizes in the adherens junction, whereas Sqh2P locates to the apical domain. These antibodies thus have the potential to be very useful in monitoring myosin activation for functional studies of morphogenesis in Drosophila.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|