1
|
Zhang FF, Zhang L, Zhao L, Lu Y, Dong X, Liu YQ, Li Y, Guo S, Zheng SY, Xiao Y, Jiang YZ. The circular RNA Rap1b promotes Hoxa5 transcription by recruiting Kat7 and leading to increased Fam3a expression, which inhibits neuronal apoptosis in acute ischemic stroke. Neural Regen Res 2023; 18:2237-2245. [PMID: 37056143 PMCID: PMC10328278 DOI: 10.4103/1673-5374.369115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023] Open
Abstract
Circular RNAs can regulate the development and progression of ischemic cerebral disease. However, it remains unclear whether they play a role in acute ischemic stroke. To investigate the role of the circular RNA Rap1b (circRap1b) in acute ischemic stroke, in this study we established an in vitro model of acute ischemia and hypoxia by subjecting HT22 cells to oxygen and glucose deprivation and a mouse model of acute ischemia and hypoxia by occluding the right carotid artery. We found that circRap1b expression was remarkably down-regulated in the hippocampal tissue of the mouse model and in the HT22 cell model. In addition, Hoxa5 expression was strongly up-regulated in response to circRap1b overexpression. Hoxa5 expression was low in the hippocampus of a mouse model of acute ischemia and in HT22-AIS cells, and inhibited HT22-AIS cell apoptosis. Importantly, we found that circRap1b promoted Hoxa5 transcription by recruiting the acetyltransferase Kat7 to induce H3K14ac modification in the Hoxa5 promoter region. Hoxa5 regulated neuronal apoptosis by activating transcription of Fam3a, a neuronal apoptosis-related protein. These results suggest that circRap1b regulates Hoxa5 transcription and expression, and subsequently Fam3a expression, ultimately inhibiting cell apoptosis. Lastly, we explored the potential clinical relevance of circRap1b and Hoxa5 in vivo. Taken together, these findings demonstrate the mechanism by which circRap1b inhibits neuronal apoptosis in acute ischemic stroke.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Liang Zhang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Lin Zhao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Lu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Xin Dong
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yan-Qi Liu
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu Li
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Shuang Guo
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Si-Yuan Zheng
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Ying Xiao
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| | - Yu-Zhu Jiang
- Department of Rehabilitation Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province), Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
3
|
Qian X, Wang Y, Hu W, Xu X, Gao L, Meng Y, Yan J. MiR-369-5p inhibits the proliferation and migration of hepatocellular carcinoma cells by down-regulating HOXA13 expression. Tissue Cell 2022; 74:101721. [DOI: 10.1016/j.tice.2021.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
4
|
Mark M, Teletin M, Wendling O, Vonesch JL, Féret B, Hérault Y, Ghyselinck NB. Pathogenesis of Anorectal Malformations in Retinoic Acid Receptor Knockout Mice Studied by HREM. Biomedicines 2021; 9:742. [PMID: 34203310 PMCID: PMC8301324 DOI: 10.3390/biomedicines9070742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Anorectal malformations (ARMs) are relatively common congenital abnormalities, but their pathogenesis is poorly understood. Previous gene knockout studies indicated that the signalling pathway mediated by the retinoic acid receptors (RAR) is instrumental to the formation of the anorectal canal and of various urogenital structures. Here, we show that simultaneous ablation of the three RARs in the mouse embryo results in a spectrum of malformations of the pelvic organs in which anorectal and urinary bladder ageneses are consistently associated. We found that these ageneses could be accounted for by defects in the processes of growth and migration of the cloaca, the embryonic structure from which the anorectal canal and urinary bladder originate. We further show that these defects are preceded by a failure of the lateral shift of the umbilical arteries and propose vascular abnormalities as a possible cause of ARM. Through the comparisons of these phenotypes with those of other mutant mice and of human patients, we would like to suggest that morphological data may provide a solid base to test molecular as well as clinical hypotheses.
Collapse
Affiliation(s)
- Manuel Mark
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), 67300 Schiltigheim, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marius Teletin
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), 67300 Schiltigheim, France
| | - Olivia Wendling
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| | - Betty Féret
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| | - Yann Hérault
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Norbert B. Ghyselinck
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (M.T.); (O.W.); (J.-L.V.); (B.F.); (Y.H.); (N.B.G.)
| |
Collapse
|
5
|
Genome sequencing in families with congenital limb malformations. Hum Genet 2021; 140:1229-1239. [PMID: 34159400 PMCID: PMC8263393 DOI: 10.1007/s00439-021-02295-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.
Collapse
|
6
|
Zhao X, Fan H, Chen X, Zhao X, Wang X, Feng Y, Liu M, Li S, Tang H. Hepatitis B Virus DNA Polymerase Restrains Viral Replication Through the CREB1/HOXA Distal Transcript Antisense RNA Homeobox A13 Axis. Hepatology 2021; 73:503-519. [PMID: 32314410 DOI: 10.1002/hep.31284] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) have been associated with infection and hepatitis B virus (HBV)-related diseases, though the underlying mechanisms remain unclear. APPROACH AND RESULTS We obtained HBV-HCC lncRNA profiles by deep sequencing and found HOXA distal transcript antisense RNA (HOTTIP) to be significantly up-regulated. RT-qPCR indicated that HOTTIP is highly expressed in HBV-positive hepatoma tissue and induced by HBV in vitro. Virological experiments showed that HOTTIP significantly suppresses the generation of hepatitis B viral surface antigen, hepatitis B viral e antigen and HBV replication. Homeobox A13 (HOXA13), a downstream factor of HOTTIP, was found to bind to HBV enhancer I and X promotor to repress the production of HBV pregenome RNA (pgRNA) and total RNA as well as HBV replication, suggesting that HOXA13 mediates HOTTIP-induced suppression of HBV replication. More interestingly, HBV DNA polymerase (DNA pol) binds to and stabilizes cAMP-responsive element-binding protein 1 (CREB1) mRNA to facilitate translation of the protein, which, in turn, binds to the regulatory element of HOTTIP to promote its expression. CONCLUSIONS Our findings demonstrate that HBV DNA pol attenuates HBV replication through activation of the CREB1-HOTTIP-HOXA13 axis. These findings shed light on the mechanism by which HBV restrains replication to contribute to persistent infection.
Collapse
Affiliation(s)
- Xiaopei Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hongxia Fan
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xi Chen
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xiaoqing Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xu Wang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yujie Feng
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Min Liu
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shengping Li
- State Key Laboratory of Oncology in Southern ChinaDepartment of Hepatobiliary OncologySun Yat-sen UniversityCancer CenterGuangzhouChina
| | - Hua Tang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
7
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Mechanism of Snhg8/miR-384/Hoxa13/FAM3A axis regulating neuronal apoptosis in ischemic mice model. Cell Death Dis 2019; 10:441. [PMID: 31165722 PMCID: PMC6549185 DOI: 10.1038/s41419-019-1631-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs, a subgroup of noncoding RNAs, are implicated in ischemic brain injury. The expression levels of Snhg8, miR-384, Hoxa13, and FAM3A were measured in chronic cerebral ischemia-induced HT22 cells and hippocampal tissues. The role of the Snhg8/miR-384/Hoxa13/FAM3A axis was evaluated in chronic cerebral ischemia models in vivo and in vitro. In this study, we found that Snhg8 and Hoxa13 were downregulated, while miR-384 was upregulated in chronic cerebral ischemia-induced HT22 cells and hippocampal tissues. Overexpression of Snhg8 and Hoxa13, and silencing of miR-384, all inhibited chronic cerebral ischemia-induced apoptosis of HT22 cells. Moreover, Snhg8 bound to miR-384 in a sequence-dependent manner and there was a reciprocal repression between Snhg8 and miR-384. Besides, overexpression of miR-384 impaired Hoxa13 expression by targeting its 3'UTR and regulated chronic cerebral ischemia-induced neuronal apoptosis. Hoxa13 bound to the promoter of FAM3A and enhanced its promotor activity, which regulated chronic cerebral ischemia-induced neuronal apoptosis. Remarkably, the in vivo experiments demonstrated that Snhg8 overexpression combined with miR-384 knockdown led to an anti-apoptosis effect. These results reveal that the Snhg8/miR-384/Hoxa13/FAM3A axis plays a critical role in the regulation of chronic cerebral ischemia-induced neuronal apoptosis.
Collapse
|
9
|
Beccari L, Yakushiji-Kaminatsui N, Woltering JM, Necsulea A, Lonfat N, Rodríguez-Carballo E, Mascrez B, Yamamoto S, Kuroiwa A, Duboule D. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus. Genes Dev 2016; 30:1172-86. [PMID: 27198226 PMCID: PMC4888838 DOI: 10.1101/gad.281055.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | | | - Joost M Woltering
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | - Anamaria Necsulea
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Lonfat
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | | | - Benedicte Mascrez
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | - Shiori Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Singarete ME, Grizante MB, Milograna SR, Nery MF, Kin K, Wagner GP, Kohlsdorf T. Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles. Genet Mol Biol 2015; 38:255-62. [PMID: 26500429 PMCID: PMC4612600 DOI: 10.1590/s1415-475738320150039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/23/2015] [Indexed: 03/03/2023] Open
Abstract
Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes.
Collapse
Affiliation(s)
- Marina E Singarete
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana B Grizante
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. ; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sarah R Milograna
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana F Nery
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. ; Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Koryu Kin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. ; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Tiana Kohlsdorf
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. ; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Holmes RS. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins. Chem Biol Interact 2014; 234:4-11. [PMID: 25446856 DOI: 10.1016/j.cbi.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022]
Abstract
Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes.
Collapse
Affiliation(s)
- Roger S Holmes
- The Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, 4111 QLD, Australia.
| |
Collapse
|
12
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|