1
|
Stetsiv M, Wan M, Prabhu S, Guzzo R, Sanjay A. Improved Methodology for Studying Postnatal Osteogenesis via Intramembranous Ossification in a Murine Bone Marrow Injury Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620082. [PMID: 39484506 PMCID: PMC11527114 DOI: 10.1101/2024.10.24.620082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Long bone injuries heal through either endochondral or intramembranous bone formation pathways. Unlike the endochondral pathway that requires a cartilage template, the process of intramembranous ossification involves the direct conversion of skeletal stem and progenitor cells (SSPCs) into bone-forming osteoblasts. There are limited surgical methods to model this process in experimental mice. Here, we have improved upon a bone marrow injury model in mice to facilitate the study of bone repair via intramembranous ossification and to assess postnatal regulators of osteogenesis. This method is highly reproducible and user-friendly, and it allows temporal assessment of new bone formation in a short period (3-7 days post-injury) using μCT and frozen section histology. Furthermore, the contributions of SSPCs and mature osteoblasts can be readily assessed using a combination of fluorescent reporter mice and this intramembranous bone marrow injury model. In clinical contexts, intramembranous bone formation is relevant for healing critical size defects, stress fractures, cortical defects, trauma from tumor resections, and joint replacements.
Collapse
Affiliation(s)
- Marta Stetsiv
- Department of Orthopedic Surgery, UConn School of Medicine, UConn Health, Farmington, CT 060630
- Department of Neuroscience, UConn School of Medicine, UConn Health, Farmington, CT 060630
| | - Matthew Wan
- Department of Orthopedic Surgery, UConn School of Medicine, UConn Health, Farmington, CT 060630
| | - Shagun Prabhu
- Department of Orthopedic Surgery, UConn School of Medicine, UConn Health, Farmington, CT 060630
| | - Rosa Guzzo
- Department of Orthopedic Surgery, UConn School of Medicine, UConn Health, Farmington, CT 060630
- Department of Neuroscience, UConn School of Medicine, UConn Health, Farmington, CT 060630
| | - Archana Sanjay
- Department of Orthopedic Surgery, UConn School of Medicine, UConn Health, Farmington, CT 060630
| |
Collapse
|
2
|
Vu EK, Karkache IY, Pham A, Koroth J, Bradley EW. Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice. J Cell Mol Med 2024; 28:e70081. [PMID: 39261913 PMCID: PMC11390340 DOI: 10.1111/jcmm.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
Collapse
Affiliation(s)
- Elizabeth K. Vu
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ismael Y. Karkache
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
| | - Anthony Pham
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Jinsha Koroth
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Elizabeth W. Bradley
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
- Stem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
3
|
Dima O, Didilescu AC, Manole CC, Pameijer C, Călin C. Synthetic composites versus calcium phosphate cements in bone regeneration: A narrative review. Ann Anat 2024; 255:152273. [PMID: 38754741 DOI: 10.1016/j.aanat.2024.152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND When the natural process of bone remodeling is disturbed, the need arises for a stimulant material in order to enhance the formation of a new healthy and strong osseous tissue to replace the damaged one. Recent studies have reported synthetic biomaterials to be a very good option for supporting bone regeneration. STUDY DESIGN Narrative review. OBJECTIVE This review aims to provide a brief presentation of two of the most recently developed synthetic biomaterials, i.e. calcium phosphate cements and synthetic composites, that are currently being used in bone regeneration with promising results. METHODS Literature searches using broad terms such as "bone regeneration," "biomaterials," "synthetic composites" and "calcium phosphate cements" were performed using PubMed. The osteal cells state of the art was explored by searching topic-specific full text keywords using Google Scholar. CONCLUSIONS Synthetic polymers such as PCL (poly-ε-caprolactone) and PLGA (poly lactic-co-glycolic acid) can improve the effectiveness of biomaterials like HA (hydroxyapatite) and BG (bioglass). Calcium phosphate, although being a suitable material for stimulating bone regeneration, needs an adjuvant in order to be effective in larger bone defects.
Collapse
Affiliation(s)
- Oana Dima
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Claudiu Constantin Manole
- Department of Biophysics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Cornelis Pameijer
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, USA
| | - Claudiu Călin
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Yao C, Pripatnanont P, Zhang J, Suttapreyasri S. Fabrication and characterization of a bioactive composite scaffold based on polymeric collagen/gelatin/nano β-TCP for alveolar bone regeneration. J Mech Behav Biomed Mater 2024; 153:106500. [PMID: 38484429 DOI: 10.1016/j.jmbbm.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (β-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano β-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP could be further studied for being used to treat alveolar bone defects in vivo.
Collapse
Affiliation(s)
- Chao Yao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Prisana Pripatnanont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Guiyang Hospital of Stomatology, Guiyang, 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand.
| |
Collapse
|
5
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
6
|
Tsou HK, Wu CH, Chan LY, Kataoka K, Itokazu N, Tsuzuki M, Hu H, Zhuo GY, Itaka K, Lin CY. Administration of mRNA-Nanomedicine-Augmented Calvarial Defect Healing via Endochondral Ossification. Pharmaceutics 2023; 15:1965. [PMID: 37514151 PMCID: PMC10383176 DOI: 10.3390/pharmaceutics15071965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Large-area craniofacial defects remain a challenge for orthopaedists, hastening the need to develop a facile and safe tissue engineering strategy; osteoconductive material and a combination of optimal growth factors and microenvironment should be considered. Faced with the unmet need, we propose that abundant cytokines and chemokines can be secreted from the bone defect, provoking the infiltration of endogenous stem cells to assist bone regeneration. We can provide a potent mRNA medicine cocktail to promptly initiate the formation of bone templates, osteogenesis, and subsequent bone matrix deposition via endochondral ossification, which may retard rapid fibroblast infiltration and prevent the formation of atrophic non-union. We explored the mutual interaction of BMP2 and TGFβ3 mRNA, both potent chondrogenic factors, on inducing endochondral ossification; examined the influence of in vitro the transcribed polyA tail length on mRNA stability; prepared mRNA nanomedicine using a PEGylated polyaspartamide block copolymer loaded in a gelatin sponge and grafted in a critical-sized calvarial defect; and evaluated bone regeneration using histological and μCT examination. The BMP2 and TGFβ3 composite mRNA nanomedicine resulted in over 10-fold new bone volume (BV) regeneration in 8 weeks than the BMP2 mRNA nanomedicine administration alone, demonstrating that the TGFβ3 mRNA nanomedicine synergistically enhances the bone's formation capability, which is induced by BMP2 mRNA nanomedicine. Our data demonstrated that mRNA-medicine-mediated endochondral ossification provides an alternative cell-free tissue engineering methodology for guiding craniofacial defect healing.
Collapse
Affiliation(s)
- Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County 35664, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- College of Health, National Taichung University of Science and Technology, Taichung 40303, Taiwan
| | - Cheng-Hsin Wu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Long Yi Chan
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Nanae Itokazu
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan
| | - Minoru Tsuzuki
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan
| | - Hsuan Hu
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterial and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chin-Yu Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
8
|
Zhang X, Wang G, Wang W, Ran C, Piao F, Ma Z, Zhang Z, Zheng G, Cao F, Xie H, Cui D, Samuel Okoye C, Yu X, Wang Z, Zhao D. Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair. Cytokine 2023; 164:156139. [PMID: 36738525 DOI: 10.1016/j.cyto.2023.156139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-β1) produced by BMSCs in bone tissue repair. METHODS To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-β receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-β1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS Our findings provide evidence that the biological mechanism of BMSC-produced TGF-β1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Guangkuo Wang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Weidan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fengyuan Piao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhijie Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhaodong Zhang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Guoshuang Zheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fang Cao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Hui Xie
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Daping Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Chukwuemeka Samuel Okoye
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Xiaoming Yu
- School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Ziming Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
9
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Takeshita N, Takano-Yamamoto T. Analysis of Chemotactic Property of CCN2/CTGF in Intramembranous Osteogenesis. Methods Mol Biol 2023; 2582:237-253. [PMID: 36370354 DOI: 10.1007/978-1-0716-2744-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemotaxis is a directed migration of cells in response to a gradient of extracellular molecules called chemoattractants. Development, growth, remodeling, and fracture healing of bones are advanced through intramembranous osteogenesis. Chemotaxis of preosteoblasts toward future bone formation sites observed in the early stage of intramembranous osteogenesis is a critical cellular process for normal bone formation. However, molecular biological mechanisms of the chemotaxis of preosteoblasts are not fully understood. We have recently clarified, for the first time, the critical role of the cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF)-integrin α5-Ras axis for chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis. In this chapter, we describe in detail the procedures of the in vivo and in vitro assays to investigate the chemotactic property of CCN2/CTGF and its underlying molecular biological mechanisms during intramembranous osteogenesis.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
11
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
12
|
Gao L, Xu T, Zhang L, Li Y, Yan T, Yu G, Chen F. Midpalatal Suture: Single-Cell RNA-Seq Reveals Intramembrane Ossification and Piezo2 Chondrogenic Mesenchymal Cell Involvement. Cells 2022; 11:cells11223585. [PMID: 36429014 PMCID: PMC9688242 DOI: 10.3390/cells11223585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The midpalatal suture is mainly responsible for the growth and development of the maxillary and resistance to rapid maxillary expansion (RME). It is essential for clinical researchers to explore the intramembrane ossification and to elucidate the underlying mechanism of the maturation and ossification process of the midpalatal suture to help identify the optimum time and force of RME. However, mechanistic studies associated with the midpalatal suture are rare. The aim of this present study is to create an intramembrane osteogenesis model for the midpalatal suture region of mice. Interestingly, we discovered a type of chondrogenic mesenchymal cell expressing Piezo2, which might be related to the detection of mechanical and external stimuli. This result provides a potential molecular and cellular mechanism that explains why the midpalatal suture is not closed until adulthood. We depict a landscape of mesenchymal cells that might play an important role in the intramembrane osteogenesis of the midpalatal suture and provide new perspectives on midpalate suture maturation and ossification, which might lead to further possibilities for clinical operations.
Collapse
Affiliation(s)
- Lu Gao
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Tiansong Xu
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Liqi Zhang
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuchen Li
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Tianxing Yan
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guoxia Yu
- Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
- Correspondence: (G.Y.); (F.C.)
| | - Feng Chen
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Correspondence: (G.Y.); (F.C.)
| |
Collapse
|
13
|
Moran MM, Ko FC, Mesner LD, Calabrese GM, Al-Barghouthi BM, Farber CR, Sumner DR. Intramembranous bone regeneration in diversity outbred mice is heritable. Bone 2022; 164:116524. [PMID: 36028119 PMCID: PMC9798271 DOI: 10.1016/j.bone.2022.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022]
Abstract
There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Larry D Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Basel M Al-Barghouthi
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Liu Y, Niu P, Zhou M, Xue H. The role of proteoglycan form of DMP1 in cranial repair. BMC Mol Cell Biol 2022; 23:43. [PMID: 36175851 PMCID: PMC9524138 DOI: 10.1186/s12860-022-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background The cranial region is a complex set of blood vessels, cartilage, nerves and soft tissues. The reconstruction of cranial defects caused by trauma, congenital defects and surgical procedures presents clinical challenges. Our previous data showed that deficiency of the proteoglycan (PG) form of dentin matrix protein 1 (DMP1-PG) could lead to abnormal cranial development. In addition, DMP1-PG was highly expressed in the cranial defect areas. The present study aimed to investigate the potential role of DMP1-PG in intramembranous ossification in cranial defect repair. Methods Mouse cranial defect models were established by using wild- type (WT) and DMP1-PG point mutation mice. Microcomputed tomography (micro-CT) and histological staining were performed to assess the extent of repair. Immunofluorescence assays and real-time quantitative polymerase chain reaction (RT‒qPCR) were applied to detect the differentially expressed osteogenic markers. RNA sequencing was performed to probe the molecular mechanism of DMP1-PG in regulating defect healing. Results A delayed healing process and an abnormal osteogenic capacity of primary osteoblasts were observed in DMP1-PG point mutation mice. Furthermore, impaired inflammatory signaling pathways were detected by using RNA transcription analysis of this model. Conclusions Our data indicate that DMP1-PG is an indispensable positive regulator during cranial defect healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00443-4.
Collapse
|
15
|
Huang R, Fu R, Yan Y, Liu C, Yang J, Xie Y, Li Q. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach. Bioeng Transl Med 2022; 7:e10312. [PMID: 36176620 PMCID: PMC9472001 DOI: 10.1002/btm2.10312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Developmental engineering of living implants from different cell sources capable of stimulating bone regeneration by recapitulating endochondral ossification (ECO) is a promising strategy for large bone defect reconstruction. However, the clinical translation of these cell-based approaches is hampered by complex manufacturing procedures, poor cell differentiation potential, and limited predictive in vivo performance. We developed an adipose tissue-based developmental engineering approach to overcome these hurdles using hypertrophic cartilaginous (HyC) constructs engineered from lipoaspirate to repair large bone defects. The engineered HyC constructs were implanted into 4-mm calvarial defects in nude rats and compared with decellularized bone matrix (DBM) grafts. The DBM grafts induced neo-bone formation via the recruitment of host cells, while the HyC pellets supported bone regeneration via ECO, as evidenced by the presence of remaining cartilage analog and human NuMA-positive cells within the newly formed bone. However, the HyC pellets clearly showed superior regenerative capacity compared with that of the DBM grafts, yielding more new bone formation, higher blood vessel density, and better integration with adjacent native bone. We speculate that this effect arises from vascular endothelial growth factor and bone morphogenetic protein-2 secretion and mineral deposition in the HyC pellets before implantation, promoting increased vascularization and bone formation upon implantation. The results of this study demonstrate that adipose-derived HyC constructs can effectively heal large bone defects and present a translatable therapeutic option for bone defect repair.
Collapse
Affiliation(s)
- Ru‐Lin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rao Fu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Yan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chuanqi Liu
- Department of Plastic and Burn SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Jing Yang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Xie
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Ko FC, Moran MM, Ross RD, Sumner DR. Activation of canonical Wnt signaling accelerates intramembranous bone regeneration in male mice. J Orthop Res 2022; 40:1834-1843. [PMID: 34811780 PMCID: PMC9124233 DOI: 10.1002/jor.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Canonical Wnt signaling plays an important role in skeletal development, homeostasis, and both endochondral and intramembranous repair. While studies have demonstrated that the inhibition of Wnt signaling impairs intramembranous bone regeneration, how its activation affects intramembranous bone regeneration has been underexplored. Therefore, we sought to determine the effects of activation of canonical Wnt signaling on intramembranous bone regeneration by using the well-established marrow ablation model. We hypothesized that mice with a mutation in the Wnt ligand coreceptor gene Lrp5 would have accelerated intramembranous bone regeneration. Male and female wild-type and Lrp5-mutant mice underwent unilateral femoral bone marrow ablation surgery in the right femur at 4 weeks of age. Both the left intact and right operated femurs were assessed at Days 3, 5, 7, 10, and 14. The intact femur of Lrp5 mutant mice of both sexes had higher bone mass than wild-type littermates, although to a greater degree in males than females. Overall, the regenerated bone volume in Lrp5 mutant male mice was 1.8-fold higher than that of littermate controls, whereas no changes were observed between female Lrp5 mutant and littermate control mice. In addition, the rate of intramembranous bone regeneration (from Day 3 to Day 7) was higher in Lrp5 mutant male mice compared to their same-sex littermate controls with no difference in the females. Thus, activation of canonical Wnt signaling increases bone mass in intact bones of both sexes, but accelerates intramembranous bone regeneration following an injury challenge only in male mice.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Meghan M. Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Ryan D. Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - D. Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| |
Collapse
|
17
|
Di Stefano DA, Orlando F, Ottobelli M, Fiori D, Garagiola U. A comparison between anorganic bone and collagen-preserving bone xenografts for alveolar ridge preservation: systematic review and future perspectives. Maxillofac Plast Reconstr Surg 2022; 44:24. [PMID: 35821286 PMCID: PMC9276906 DOI: 10.1186/s40902-022-00349-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
After tooth extraction, dimensional changes affect the alveolar socket, leading to loss in alveolar bone height and width. Histological modifications also occur, with initial formation of a blood clot that is replaced with granulation tissue and subsequently with a provisional connective tissue matrix. Spontaneous healing ends with socket filling with woven bone, which is gradually replaced with lamellar bone and bone marrow. Adequate alveolar ridge dimensions and bone quality are required to assure optimal stability and osseointegration following dental implant placement. When a tooth is extracted, alveolar ridge preservation (ARP) procedures are an effective method to prevent collapse of the post-extraction socket. Heterologous bone is widely chosen by clinicians for ARP, and anorganic bone xenografts (ABXs) made bioinert by heat treatment represents the most used biomaterial in clinical applications. Collagen-preserving bone xenografts (CBXs) made of porcine or equine bone are fabricated by less invasive chemical or enzymatic treatments to remove xenogenic antigens, and these are also effective in preserving post-extraction sites. Clinical differences between anorganic bone substitutes and collagen-preserving materials are not well documented in the literature but understanding these differences could clarify how processing protocols influence biomaterial behavior in situ. This systematic review of the literature compares the dimensional changes and histological features of ABXs versus CBXs in ridge preservation procedures to promote awareness of different bone xenograft efficacies in stimulating the healing of post-extraction sockets.
Collapse
Affiliation(s)
- Danilo Alessio Di Stefano
- Private Practice, Centro Odontoiatrico e Protesico Civitali S.R.L., Milan, Italy.
- Department of Dentistry, Vita-Salute San Raffaele University Milan, Milan, Italy.
| | - Francesco Orlando
- Private Practice, Centro Odontoiatrico e Protesico Civitali S.R.L., Milan, Italy
- Dental School, Vita-Salute University IRCCS San Raffaele, Milan, Italy
| | - Marco Ottobelli
- Private Practice, Centro Odontoiatrico e Protesico Civitali S.R.L., Milan, Italy
| | - Davide Fiori
- Private Practice, Centro Odontoiatrico e Protesico Civitali S.R.L., Milan, Italy
| | - Umberto Garagiola
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
19
|
Yan CP, Wang XK, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li YL. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front Cell Dev Biol 2022; 10:883228. [PMID: 35669516 PMCID: PMC9164109 DOI: 10.3389/fcell.2022.883228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Bone defects are a global public health problem. However, the available methods for inducing bone regeneration are limited. The application of traditional Chinese herbs for bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol similar to estrogen, that promotes protein synthesis in cells; however, its function in bone regeneration remains unclear. In this study, we investigated the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells were used to test the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-ecdysterone influenced the expression of osteogenesis-related genes, and the bone regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction, the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could upregulate the expression of osteoblastic-related genes, and promoted ALP activity and the formation of calcium nodules. We also determined that β-ecdysterone increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/Osterix signaling pathway and by enrichment biological processes. For in vivo experiments, a femoral condyle defect model was constructed by drilling a bone defect measuring 3 mm in diameter and 4 mm in depth in the femoral condyle of 8-week-old Sprague Dawley male rats. This model was used to further assess the bone regenerative functions of β-ecdysterone. The results of micro-computed tomography showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone volume, bone surface, and bone mineral density at each observation time point. Immunohistochemistry confirmed that the β-ecdysterone also increased the expression of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4 and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has revealed a new direction of osteogenic differentiation and has provided novel therapeutic strategies for treating bone defects.
Collapse
Affiliation(s)
- Cai-Ping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xing-Kuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Zhou X, Liu J, Zheng Y, Zhang Z, Wu Y, Yang W, Liu J, Huang Y, Yi Y, Zhao Z, Xiao H, Mo X, Wang J. SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production. Cell Rep 2022; 39:110750. [PMID: 35508129 DOI: 10.1016/j.celrep.2022.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/02/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor β (PDGFRβ) impairs bone repair. We further show that PDGFRβ-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRβ/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yange Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenke Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanmei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hengyi Xiao
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
22
|
Yang S, Wang N, Ma Y, Guo S, Guo S, Sun H. Immunomodulatory effects and mechanisms of distraction osteogenesis. Int J Oral Sci 2022; 14:4. [PMID: 35067679 PMCID: PMC8784536 DOI: 10.1038/s41368-021-00156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/11/2022] Open
Abstract
Distraction osteogenesis (DO) is widely used for bone tissue engineering technology. Immune regulations play important roles in the process of DO like other bone regeneration mechanisms. Compared with others, the immune regulation processes of DO have their distinct features. In this review, we summarized the immune-related events including changes in and effects of immune cells, immune-related cytokines, and signaling pathways at different periods in the process of DO. We aim to elucidated our understanding and unknowns about the immunomodulatory role of DO. The goal of this is to use the known knowledge to further modify existing methods of DO, and to develop novel DO strategies in our unknown areas through more detailed studies of the work we have done.
Collapse
|
23
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
24
|
Lack of 5-lipoxygenase in intramembranous and endochondral 129Sv mice skeleton and intramembranous healing. Arch Oral Biol 2021; 131:105266. [PMID: 34571394 DOI: 10.1016/j.archoralbio.2021.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To analyze the lack of 5-lipoxygenase (5LO) on dental socket healing and post-natal phenotype of intramembranous and endochondral bones. DESIGN Wild type (WT) 129/SvEv (n = 20) and 5LO knockout (5LOKO) (n = 20) male mice underwent tooth extraction of the upper right incisor and were euthanized after 7, 14, and 30 day time points for the evaluation of dental socket healing and histological phenotyping of intramembranous (IM) and endochondral (EC) bones. Microscopic analysis of alveolar sockets included histopathological description, histomorphometry, and immunohistochemistry for 5LO, cyclooxygenase 2 (COX2), and tartrate resistant acid phosphatase (TRAP). RESULTS Histological phenotyping revealed thicker cortical bone in EC bones (femur and vertebra) of 5LOKO mice compared to WTs, with no differences in collagenous content. Although dental socket healing was similarly observed in both groups, WT mice revealed increased numbers of COX-2+ and 5LO+ cells during bone maturing stage, with a decrease of TRAP+ cells at day 30. On the other hand, an increased quantity of fibroblasts was observed at day 7 in 5LOKO group, as well as increased inflammatory infiltrate and significantly decreased TRAP+ cells at final stages of alveolar socket healing in comparison to WTs. CONCLUSIONS The lack of 5LO in 5LOKO mice resulted in thicker cortical of EC, but not of IM post natal bones. Furthermore, genetic deletion of 5LO in the 5LOKO mice directly affected the inflammatory response during socket healing, influencing initial and late phases of bone repair in a model of post-tooth extraction in 129Sv WT and 5LOKO mice.
Collapse
|
25
|
Bandyopadhyay A, Francis-West P, Katti D, Roselló-Díez A. Musculoskeletal development, maintenance and regeneration: Part two. Dev Dyn 2021; 250:300-301. [PMID: 33580530 DOI: 10.1002/dvdy.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, UK
| | - Dhirendra Katti
- Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Alberto Roselló-Díez
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|
27
|
Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, Amin R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021; 26:619. [PMID: 33504080 PMCID: PMC7865423 DOI: 10.3390/molecules26030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Punjab, Pakistan
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU), 1954 Huashan Road, Shanghai 200030, China
| | - Saiful Izwan Abd Razak
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Wafa Shamsan Al Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (W.S.A.A.); (S.N.)
| | - T. Joseph Sahaya Anand
- Sustainable and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Melaka 76100, Malacca, Malaysia;
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Rafha Street, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia
| |
Collapse
|
28
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|