1
|
Armistead J, Höpfl S, Goldhausen P, Müller-Hartmann A, Fahle E, Hatzold J, Franzen R, Brodesser S, Radde NE, Hammerschmidt M. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis 2024; 15:746. [PMID: 39397024 PMCID: PMC11471799 DOI: 10.1038/s41419-024-07134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Sebastian Höpfl
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Pierre Goldhausen
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | | | - Evelin Fahle
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics/Metabolomics Facility, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicole E Radde
- Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology / Developmental Biology, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 2023; 12:e85930. [PMID: 37921445 PMCID: PMC10651176 DOI: 10.7554/elife.85930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023] Open
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move toward the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al., 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement toward the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of MississippiUniversityUnited States
| | - Tess McCann
- Department of Biology, University of MississippiUniversityUnited States
| | - Harini Saravanan
- Department of Biology, University of MississippiUniversityUnited States
| | - Jaret Lieberth
- Department of Biology, University of MississippiUniversityUnited States
| | - Prashanna Koirala
- Department of Biology, University of MississippiUniversityUnited States
| | - Joshua Bloomekatz
- Department of Biology, University of MississippiUniversityUnited States
| |
Collapse
|
3
|
Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. The myocardium utilizes Pdgfra-PI3K signaling to steer towards the midline during heart tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522612. [PMID: 36712046 PMCID: PMC9881939 DOI: 10.1101/2023.01.03.522612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Along with extrinsic influences such as the adjacent anterior endoderm which are known to be required for cardiac fusion, we previously showed that the platelet-derived growth factor receptor alpha (Pdgfra) is also required. However, an intrinsic mechanism that regulates myocardial movement remains to be elucidated. Here, we uncover an essential intrinsic role in the myocardium for the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway in directing myocardial movement towards the midline. In vivo imaging reveals that in PI3K-inhibited zebrafish embryos myocardial movements are misdirected and slower, while midline-oriented dynamic myocardial membrane protrusions become unpolarized. Moreover, PI3K activity is dependent on and genetically interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, University, MS 38677
| | - Tess McCann
- Department of Biology, University of Mississippi, University, MS 38677
| | - Harini Saravanan
- Department of Biology, University of Mississippi, University, MS 38677
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, University, MS 38677
| | - Prashanna Koirala
- Department of Biology, University of Mississippi, University, MS 38677
| | - Joshua Bloomekatz
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
4
|
Mahabaleshwar H, Asharani PV, Loo TY, Koh SY, Pitman MR, Kwok S, Ma J, Hu B, Lin F, Li Lok X, Pitson SM, Saunders TE, Carney TJ. Slit‐Robo signalling establishes a Sphingosine‐1‐phosphate gradient to polarise fin mesenchyme. EMBO Rep 2022; 23:e54464. [DOI: 10.15252/embr.202154464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - PV Asharani
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| | - Tricia Yi Loo
- Mechanobiology Institute National University of Singapore Singapore City Singapore
| | - Shze Yung Koh
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Melissa R Pitman
- Centre for Cancer Biology University of South Australia, and SA Pathology North Tce Adelaide SA Australia
- School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Samuel Kwok
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Jiajia Ma
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| | - Bo Hu
- Department of Anatomy & Cell Biology Carver College of Medicine The University of Iowa Iowa City IA USA
| | - Fang Lin
- Department of Anatomy & Cell Biology Carver College of Medicine The University of Iowa Iowa City IA USA
| | - Xue Li Lok
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| | - Stuart M Pitson
- Centre for Cancer Biology University of South Australia, and SA Pathology North Tce Adelaide SA Australia
| | - Timothy E Saunders
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
- Mechanobiology Institute National University of Singapore Singapore City Singapore
- Warwick Medical School University of Warwick Coventry UK
| | - Tom J Carney
- Lee Kong Chian School of Medicine Experimental Medicine Building Nanyang Technological University Singapore City Singapore
- Institute of Molecular and Cell Biology (IMCB) A*STAR (Agency for Science, Technology and Research) Singapore City Singapore
| |
Collapse
|
5
|
Zhang R, Wang Q, Yang J. Potential of sphingosine-1-phosphate in preventing SARS-CoV-2 infection by stabilizing and protecting endothelial cells: Narrative review. Medicine (Baltimore) 2022; 101:e29164. [PMID: 35475801 PMCID: PMC9276324 DOI: 10.1097/md.0000000000029164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide, resulting in over 250 million infections and >5 million deaths. Most antiviral drugs and vaccines have shown limited efficacy against SARS-CoV-2. Clinical data revealed that except for the large number of self-healing mild cases, moderate and severe cases mostly survived after supportive treatment but not specific drug administration or vaccination. The endothelial system is the first physiological barrier, and its structural stability is of critical importance in conferring disease resistance. Membrane lipid components, particularly sphingosine-1-phosphate (S1P), play a central role in stabilizing the cell membrane.Here, we used "Boolean Operators" such as AND, OR, and NOT, to search for relevant research articles in PubMed, then reviewed the potential of S1P in inhibiting SARS-CoV-2 infection by stabilizing the endothelial system, this is the major aim of this review work.Reportedly, vasculitis and systemic inflammatory vascular diseases are caused by endothelial damage resulting from SARS-CoV-2 infection. S1P, S1P receptor (SIPR), and signaling were involved in the process of SARS-CoV-2 infection, and S1P potentially regulated the function of EC barrier, in turn, inhibited the SARS-CoV-2 to infect the endothelial cells, and ultimately has the promising therapeutic value to coronavirus disease 2019.Taken together, we conclude that maintaining or administering a high level of S1P will preserve the integrity of the EC structure and function, in turn, lowering the risk of SARS-CoV-2 infection and reducing complications and mortality.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Qiang Wang
- Gansu Medical College, Pingliang, Gansu, China
| | - Jianshe Yang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Gansu Medical College, Pingliang, Gansu, China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Pandey S, Banks KM, Kumar R, Kuo A, Wen D, Hla T, Evans T. Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest. Stem Cells 2020; 38:613-623. [PMID: 31916656 PMCID: PMC7217063 DOI: 10.1002/stem.3145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Sphingosine‐1‐phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide‐derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double‐null state. The Sphk1/2‐null ESCs lack S1P and accumulate the precursor sphingosine. The double‐mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.
Collapse
Affiliation(s)
- Suveg Pandey
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Duancheng Wen
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 2019; 9:1138. [PMID: 30718751 PMCID: PMC6361991 DOI: 10.1038/s41598-018-37946-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
3-ketodihydrosphingosine reductase (KDSR) is the key enzyme in the de novo sphingolipid synthesis. We identified a novel missense kdsrI105R mutation in zebrafish that led to a loss of function, and resulted in progression of hepatomegaly to steatosis, then hepatic injury phenotype. Lipidomics analysis of the kdsrI105R mutant revealed compensatory activation of the sphingolipid salvage pathway, resulting in significant accumulation of sphingolipids including ceramides, sphingosine and sphingosine 1-phosphate (S1P). Ultrastructural analysis revealed swollen mitochondria with cristae damage in the kdsrI105R mutant hepatocytes, which can be a cause of hepatic injury in the mutant. We found elevated sphingosine kinase 2 (sphk2) expression in the kdsrI105R mutant. Genetic interaction analysis with the kdsrI105R and the sphk2wc1 mutants showed that sphk2 depletion suppressed liver defects observed in the kdsrI105R mutant, suggesting that liver defects were mediated by S1P accumulation. Further, both oxidative stress and ER stress were completely suppressed by deletion of sphk2 in kdsrI105R mutants, linking these two processes mechanistically to hepatic injury in the kdsrI105R mutants. Importantly, we found that the heterozygous mutation in kdsr induced predisposed liver injury in adult zebrafish. These data point to kdsr as a novel genetic risk factor for hepatic injury.
Collapse
|
9
|
Mendelson K, Pandey S, Hisano Y, Carellini F, Das BC, Hla T, Evans T. The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. eLife 2017; 6:21992. [PMID: 28956531 PMCID: PMC5650468 DOI: 10.7554/elife.21992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.
Collapse
Affiliation(s)
- Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, United States
| | - Suveg Pandey
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Yu Hisano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Frank Carellini
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Bhaskar C Das
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| |
Collapse
|
10
|
Bloomekatz J, Singh R, Prall OW, Dunn AC, Vaughan M, Loo CS, Harvey RP, Yelon D. Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. eLife 2017; 6:21172. [PMID: 28098558 PMCID: PMC5298878 DOI: 10.7554/elife.21172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.21172.001 In the growing embryo, the heart initially develops in the form of a simple tube. Its outer layer is made up of muscular cells, called myocardial cells, that pump blood through the tube. Before the heart tube develops, two groups of myocardial cells exist – one on each side of the embryo. To assemble the heart, these two populations of cells must move as a group to the middle of the embryo, where they meet and merge through a process called cardiac fusion. This movement of myocardial cells toward the middle of the embryo depends upon interactions with a neighboring tissue called the endoderm. How the endoderm directs the movement of the myocardial cells was not well understood. The PDGF signaling pathway guides the movement of several different types of cells in the body, but it had not been previously linked to the early stages of heart tube assembly. In this pathway, a molecule called platelet-derived growth factor (PDGF) binds to PDGF receptors that sit on the surface of cells. Using microscopy and genetic analysis to study zebrafish and mouse embryos, Bloomekatz et al. now show that embryos that carry mutations in a gene that encodes a PDGF receptor suffer from defects in heart tube assembly. Further examination of the mutant zebrafish embryos revealed that the myocardial cells were not properly directed toward the middle of the embryo. In fact, many of these cells appeared to move away from the midline. Bloomekatz et al. also observed that, in normal embryos, the endoderm cells that lie adjacent to the myocardial cells produce PDGF. Therefore, it appears that PDGF produced by the endoderm could interact with PDGF receptors on the myocardial cells to direct these cells toward the middle of the embryo. The next step will be to figure out how this signaling influences the machinery inside the myocardial cells that controls their movement. Ultimately, this knowledge could lead to new ways to identify and treat congenital heart diseases. DOI:http://dx.doi.org/10.7554/eLife.21172.002
Collapse
Affiliation(s)
- Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Reena Singh
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, Australia
| | - Owen Wj Prall
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ariel C Dunn
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Megan Vaughan
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Chin-San Loo
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Australia
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
11
|
Haack T, Abdelilah-Seyfried S. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 2016; 143:373-86. [PMID: 26839341 DOI: 10.1242/dev.131425] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flow-responsive endocardial signalling can result in pathophysiological changes.
Collapse
Affiliation(s)
- Timm Haack
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| |
Collapse
|
12
|
Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Int J Mol Sci 2016; 17:ijms17050727. [PMID: 27187373 PMCID: PMC4881549 DOI: 10.3390/ijms17050727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.
Collapse
|