1
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Saksis R, Silamikelis I, Laksa P, Megnis K, Peculis R, Mandrika I, Rogoza O, Petrovska R, Balcere I, Konrade I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Pirags V, Klovins J, Rovite V. Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue. Front Oncol 2021; 10:593760. [PMID: 33680922 PMCID: PMC7928352 DOI: 10.3389/fonc.2020.593760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.
Collapse
Affiliation(s)
- Rihards Saksis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pola Laksa
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olesja Rogoza
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Inga Balcere
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Liva Steina
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | | | - Valdis Pirags
- Pauls Stradins Clinical University Hospital, Riga, Latvia.,University of Latvia Faculty of Medicine, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
3
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
4
|
He J, Feng C, Zhu H, Wu S, Jin P, Xu T. Grainyhead-like 2 as a double-edged sword in development and cancer. Am J Transl Res 2020; 12:310-331. [PMID: 32194886 PMCID: PMC7061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Grainyhead-like 2 (GRHL2), one of the three homologs of Drosophila grainyhead, contributes to epithelial morphogenesis and differentiation. Dysregulation of GRHL2 has been shown to be involved in hearing loss and neural tube defects during embryogenesis. Moreover, it is well-recognized that GRHL2 suppresses epithelial-to-mesenchymal transition (EMT) that is required for migration and invasion of carcinoma, implicating, GRHL2 in carcinogenesis. Diverse mechanisms, as well as the varied roles of GRHL2 in different tumor tissues, have been elucidated. However, the functions of GRHL2 appear to be more complicated than initially thought. GRHL2, acting as either a tumor enhancer or a tumor inhibitor, depends on the type of cancer. In this review, we summarize research progress about normal physiological functions of GRHL2 including epithelial morphogenesis, neural tube closure, and hearing loss. Moreover, the mechanisms of GRHL2 in tumorigenesis, containing EMT suppression, forming a negative feedback loop with ZEB1 and miR200 family, interactions with estrogen receptor (ER)-dependent signaling pathway, regulation of telomerase reverse transcriptase and relationships with TGF-beta signaling pathway are discussed in this review in an effort to better understand the roles of GRHL2 in a variety of cancers toward the goal of GRHL2-targeted treatment in the near future.
Collapse
Affiliation(s)
- Jiaxing He
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Chunyang Feng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Shuying Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
5
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
7
|
Boivin FJ, Schmidt-Ott KM. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. Ann N Y Acad Sci 2017. [PMID: 28636799 DOI: 10.1111/nyas.13367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization.
Collapse
Affiliation(s)
- Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité Medical University, Berlin, Germany
| |
Collapse
|