1
|
Chen S, Cui J, Ji Y, Kong L, Shen W. Application of Computer-Assisted Preoperative Planning in Treating Congenital Bilateral Zygomatico-Maxillo-Mandibular Fusion: A Case Report and Literature Review. Cleft Palate Craniofac J 2023; 60:489-493. [PMID: 35440222 DOI: 10.1177/10556656211064775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congenital fusion of the jaws (syngnathia) is a rare facial malformation with an unknown etiology. This disease may vary in severity with adhesion of soft tissue and bony fusion. It can be anterior fusion, unilateral or bilateral fusion, and complete fusion. The main problem of these patients is the difficulty of airway maintenance and feeding, and the most common postoperative complication is the relapse of bony fusion. Here, we report a young male patient with bony syngnathia, involving bilateral fusion of the ascending ramus and body of the mandible with the maxillary complex. We performed bone isolation by computer-assisted preoperative planning and used an insertional temporalis flap to fix the wound surface to prevent refusion of bone.
Collapse
Affiliation(s)
- Sheng Chen
- 159388Children's Hospital of Nanjing Medical University
| | - Jie Cui
- 159388Children's Hospital of Nanjing Medical University
| | - Yi Ji
- 159388Children's Hospital of Nanjing Medical University
| | | | - Weimin Shen
- 159388Children's Hospital of Nanjing Medical University
| |
Collapse
|
2
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
3
|
Drtikolová Kaupová S, Schamall D, Cvrček J, Půtová L, Velemínský P, Teschler-Nicola M. The dietary behavior of two early medieval individuals with temporomandibular ankylosis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 31:1-6. [PMID: 32805633 DOI: 10.1016/j.ijpp.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES This study aimed to reconstruct the dietary behavior of two early medieval individuals who display gnathic malformation. MATERIAL Two skeletons affected by temporomandibular ankylosis were analyzed, one from the Great Moravian burial site of Rajhradice (9th century AD, Czech Republic), and the other from the Avar burial site of Schӧnkirchen (8th century AD, Austria). METHODS Carbon and nitrogen isotopic values were measured from the bone collagen of both individuals. In the Rajhradice case, where the childhood origin of ankylosis is deduced, isotopic analysis of dentine sections was performed. RESULTS Both individuals show isotopic values within the range of variation of a contemporaneous population sample. There was no observable dietary change in the Rajhradice individual that could be linked to the occurrence of ankylosis. CONCLUSIONS Both individuals consumed diets typical for their populations. They appear to not have restricted access to foodstuffs, namely animal protein, which would likely have had to be served in liquid (e.g. milk) or in a highly mashed form to compensate for insufficient mastication. SIGNIFICANCE This finding provides specific evidence of care provided to these two afflicted members of past populations. LIMITATIONS Though the proportion of animal protein is an important indicator of the quality of diet, many other aspects of diet - such as micronutrient content - elude stable isotope analysis. SUGGESTIONS FOR FURTHER RESEARCH Amino acid compound specific isotope analyses of collagen would provide deeper insight into both the diet and physiology of the affected individuals.
Collapse
Affiliation(s)
- Sylva Drtikolová Kaupová
- Department of Anthropology, National Museum, Václavské náměstí 68, 11579 Praha 1, Czech Republic.
| | - Doris Schamall
- Department of Evolutionary Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Burgring 7, A 1010 Vienna, Austria.
| | - Jan Cvrček
- Department of Anthropology, National Museum, Václavské náměstí 68, 11579 Praha 1, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Viničná 7, 128 43, Praha 2, Czech Republic.
| | - Lenka Půtová
- Department of Anthropology, National Museum, Václavské náměstí 68, 11579 Praha 1, Czech Republic; Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University, U Nemocnice 4, 121 08, Prague, Czech Republic.
| | - Petr Velemínský
- Department of Anthropology, National Museum, Václavské náměstí 68, 11579 Praha 1, Czech Republic.
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Burgring 7, A 1010 Vienna, Austria.
| |
Collapse
|
4
|
Shimomura T, Kawakami M, Tatsumi K, Tanaka T, Morita-Takemura S, Kirita T, Wanaka A. The Role of the Wnt Signaling Pathway in Upper Jaw Development of Chick Embryo. Acta Histochem Cytochem 2019; 52:19-26. [PMID: 30923412 PMCID: PMC6434314 DOI: 10.1267/ahc.18038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022] Open
Abstract
Cleft lip with or without cleft palate (CLP) usually results from a failure of the medial nasal prominences to fuse with the lateral and maxillary prominences. This failure inhibits facial morphogenesis regulated by several major morphogenetic signaling pathways. We hypothesized that CLP results from the failure of the Wnt signaling pathway. To examine whether Wnt signaling can influences upper jaw development, we applied beads soaked with Dickkopf-1 (Dkk-1), Alsterpaullone (AL) or Wnt3a to the right side of the maxillary prominence of the chick embryo. The embryo showed a defect of the maxilla on the treated side, and skeletal staining revealed hypoplasia of the premaxilla and palatine bone as a result of Dkk-1-soaked bead implantation. 5-bromo-2'-deoxyuridine (BrdU)-positive cell numbers in the treated maxillary prominence were significantly lower at both 24 and 48 hr after implantation. Down-regulation of the expression of Bmp4, Tbx22, Sox9, and Barx1 was confirmed in the maxillary prominence treated with Dkk-1, which indicated that the deformity of the maxillary bone was controlled by gene targets of the Wnt signaling pathway. Expression of N-cadherin was seen immunohistochemically in the maxillary prominences of embryos at 6 hr and increased at 24 hr after AL treatment. Wnt signaling enhanced by AL or Wnt3a up-regulated the expression levels of Msx1, Bmp4, Tbx22, Sox9, and Barx1. Our data suggest that the Wnt signaling pathway regulates maxillary morphogenesis and growth through Bmp4, Tbx22, Sox9, and Barx1. Wnt signaling might regulate N-cadherin expression via Msx1, resulting in cell aggregation for osteochondrogenesis.
Collapse
Affiliation(s)
| | | | - Kouko Tatsumi
- Department of Anatomy and Neurosciences, Nara Medical University
| | - Tatsuhide Tanaka
- Department of Anatomy and Neurosciences, Nara Medical University
| | | | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University
| | - Akio Wanaka
- Department of Anatomy and Neurosciences, Nara Medical University
| |
Collapse
|
5
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
6
|
Martínez-Tafalla López C, Lloreda-García JM, Pina-Molina JM, Fuentes-Gutiérrez C. [Congenital syngnathia]. An Pediatr (Barc) 2018. [PMID: 29519706 DOI: 10.1016/j.anpedi.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Guo S, Zhang Y, Zhou T, Wang D, Weng Y, Chen Q, Ma J, Li YP, Wang L. GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ 2018. [PMID: 29523871 PMCID: PMC6219484 DOI: 10.1038/s41418-018-0083-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of GATA-binding protein 4 (GATA4) in neural crest cells (NCCs) is poorly defined. Here we showed that mouse NCCs lacking GATA4 exhibited developmental defects in craniofacial bone, teeth, and heart. The defects likely occurred due to decreased cell proliferation at the developmental stage. The in vitro results were consistent with the mouse model. The isobaric tags for relative and absolute quantitation assay revealed that BARX1 is one of the differentially expressed proteins after GATA4 knockdown in NCCs. On the basis of the results of dual-luciferase, electro-mobility shift, and chromatin immunoprecipitation assays, Barx1 expression is directly regulated by GATA4 in NCCs. In zebrafish, gata4 knockdown affects the development of NCCs derivatives. However, the phenotype in zebrafish could be partly rescued by co-injection of gata4 morpholino oligomers and barx1 mRNA. This study identified new downstream targets of GATA4 in NCCs and uncovered additional evidence of the complex regulatory functions of GATA4 in NCC development.
Collapse
Affiliation(s)
- Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Boulevard, Birmingham, AL, 35294-2182, USA.
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|