1
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
2
|
Liu X, He X, Chen M, Wang Y, Guo C, Zhang H, Wang X, Hao Y, Wei Y, Liang Z, Zhao L, Yan D, Huang D. Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration. Int J Biol Macromol 2024; 265:131059. [PMID: 38521338 DOI: 10.1016/j.ijbiomac.2024.131059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.
Collapse
Affiliation(s)
- Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuhong He
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjin Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Chaiqiong Guo
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hao Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xin Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yanchao Hao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Danhong Yan
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Suzhou, Taicang 215411, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
3
|
Wernlé KK, Sonnenfelt MA, Leek CC, Ganji E, Sullivan AL, Offutt C, Shuff J, Ornitz DM, Killian ML. Loss of Fgfr1 and Fgfr2 in Scleraxis-lineage cells leads to enlarged bone eminences and attachment cell death. Dev Dyn 2023; 252:1180-1188. [PMID: 37212424 PMCID: PMC10524747 DOI: 10.1002/dvdy.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.
Collapse
Affiliation(s)
- Kendra K. Wernlé
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716
| | - Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Claudia Offutt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri, 63110
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Gielen E, Dupont J, Dejaeger M, Laurent MR. Sarcopenia, osteoporosis and frailty. Metabolism 2023; 145:155638. [PMID: 37348597 DOI: 10.1016/j.metabol.2023.155638] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Muscles and bones are intricately connected tissues displaying marked co-variation during development, growth, aging, and in many diseases. While the diagnosis and treatment of osteoporosis are well established in clinical practice, sarcopenia has only been classified internationally as a disease in 2016. Both conditions are associated with an increased risk of adverse health outcomes such as fractures, dysmobility and mortality. Rather than focusing on one dimension of bone or muscle mass or weakness, the concept of musculoskeletal frailty captures the overall loss of physiological reserves in the locomotor system with age. The term osteosarcopenia in particular refers to the double jeopardy of osteoporosis and sarcopenia. Muscle-bone interactions at the biomechanical, cellular, paracrine, endocrine, neuronal or nutritional level may contribute to the pathophysiology of osteosarcopenia. The paradigm wherein muscle force controls bone strength is increasingly facing competition from a model centering on the exchange of myokines, osteokines and adipokines. The most promising results have been obtained in preclinical models where common drug targets have been identified to treat these conditions simultaneously. In this narrative review, we critically summarize the current understanding of the definitions, epidemiology, pathophysiology, and treatment of osteosarcopenia as part of an integrative approach to musculoskeletal frailty.
Collapse
Affiliation(s)
- Evelien Gielen
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jolan Dupont
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Marian Dejaeger
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; Geriatrics Department, Imelda Hospital, Bonheiden, Belgium.
| |
Collapse
|
5
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
6
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|