1
|
Meng (姿 含 孟) Z, Norwitz NG, Bickel SE. Meiotic cohesion requires Sirt1 and preserving its activity in aging oocytes reduces missegregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642822. [PMID: 40161738 PMCID: PMC11952436 DOI: 10.1101/2025.03.12.642822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation errors in human oocytes increase dramatically as women age and premature loss of meiotic cohesion is one factor that contributes to a higher incidence of segregation errors in older oocytes. Here we show that cohesion maintenance during meiotic prophase in Drosophila oocytes requires the NAD+-dependent deacetylase, Sirt1. Knockdown of Sirt1 during meiotic prophase causes premature loss of arm cohesion and chromosome segregation errors. We have previously demonstrated that when Drosophila oocytes arrest and age in diplotene, segregation errors increase significantly. By quantifying acetylation of the Sirt1 substrate H4K16 on oocytes chromosomes, we find that Sirt1 deacetylase activity declines markedly during aging. However, if females are fed the Sirt1 activator SRT1720 as their oocytes age, the H4K16ac signal on oocyte DNA remains low in aged oocytes, consistent with preservation of Sirt1 activity during aging. Strikingly, age-dependent segregation errors are significantly reduced if mothers are fed SRT1720 while their oocytes age. Our data suggest that maintaining Sirt1 activity in aging oocytes may provide a viable therapeutic strategy to decrease age-dependent segregation errors.
Collapse
Affiliation(s)
- Zihan Meng (姿 含 孟)
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Nicholas G. Norwitz
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| |
Collapse
|
2
|
Lake CM, Gardner J, Briggs S, Yu Z, McKown G, Hawley RS. The deubiquitinase Usp7 in Drosophila melanogaster is required for synaptonemal complex maintenance. Proc Natl Acad Sci U S A 2024; 121:e2409346121. [PMID: 39190345 PMCID: PMC11388383 DOI: 10.1073/pnas.2409346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.
Collapse
Affiliation(s)
| | | | - Salam Briggs
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Grace McKown
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of KansasMedical Center, Kansas City, KS66160
| |
Collapse
|
3
|
Haseeb MA, Bernys AC, Dickert EE, Bickel SE. An RNAi screen to identify proteins required for cohesion rejuvenation during meiotic prophase in Drosophila oocytes. G3 (BETHESDA, MD.) 2024; 14:jkae123. [PMID: 38849129 PMCID: PMC11304968 DOI: 10.1093/g3journal/jkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco. In support of this model, we recently demonstrated that chromosome-associated cohesin turns over extensively during meiotic prophase and failure to load cohesin onto chromosomes after premeiotic S phase results in arm cohesion defects in Drosophila oocytes. To identify proteins required for prophase cohesion rejuvenation but not S phase establishment, we conducted a Gal4-UAS inducible RNAi screen that utilized two distinct germline drivers. Using this strategy, we identified 29 gene products for which hairpin expression during meiotic prophase, but not premeiotic S phase, significantly increased segregation errors. Prophase knockdown of Brahma or Pumilio, two positives with functional links to the cohesin loader, caused a significant elevation in the missegregation of recombinant homologs, a phenotype consistent with premature loss of arm cohesion. Moreover, fluorescence in situ hybridization confirmed that Brahma, Pumilio, and Nipped-B are required during meiotic prophase for the maintenance of arm cohesion. Our data support the model that Brahma and Pumilio regulate Nipped-B-dependent cohesin loading during rejuvenation. Future analyses will better define the mechanism(s) that govern meiotic cohesion rejuvenation and whether additional prophase-specific positives function in this process.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| | - Alana C Bernys
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA 08544
| | - Erin E Dickert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA 27710
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| |
Collapse
|
4
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages in Drosophila oocytes during meiotic prophase. Curr Biol 2024; 34:2868-2879.e6. [PMID: 38870933 PMCID: PMC11258876 DOI: 10.1016/j.cub.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Katherine A Weng
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
5
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages during meiotic prophase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553729. [PMID: 37645916 PMCID: PMC10462139 DOI: 10.1101/2023.08.17.553729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Moreover, nearly complete turnover of chromosome-associated cohesin occurs during meiotic prophase, with faster replacement on the arms than at the centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A. Haseeb
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | - Katherine A. Weng
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | | |
Collapse
|
7
|
Hanlon SL, Hawley RS. B chromosomes reveal a female meiotic drive suppression system in Drosophila melanogaster. Curr Biol 2023:S0960-9822(23)00476-1. [PMID: 37146608 DOI: 10.1016/j.cub.2023.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Selfish genetic elements use a myriad of mechanisms to drive their inheritance and ensure their survival into the next generation, often at a fitness cost to its host.1,2 Although the catalog of selfish genetic elements is rapidly growing, our understanding of host drive suppression systems that counteract self-seeking behavior is lacking. Here, we demonstrate that the biased transmission of the non-essential, non-driving B chromosomes in Drosophila melanogaster can be achieved in a specific genetic background. Combining a null mutant of matrimony, a gene that encodes a female-specific meiotic regulator of Polo kinase,3,4 with the TM3 balancer chromosome creates a driving genotype that is permissive for the biased transmission of the B chromosomes. This drive is female-specific, and both genetic components are necessary, but not individually sufficient, for permitting a strong drive of the B chromosomes. Examination of metaphase I oocytes reveals that B chromosome localization within the DNA mass is mostly abnormal when drive is the strongest, indicating a failure of the mechanism(s) responsible for the proper distribution of B chromosomes. We propose that some proteins important for proper chromosome segregation during meiosis, like Matrimony, may have an essential role as part of a meiotic drive suppression system that modulates chromosome segregation to prevent genetic elements from exploiting the inherent asymmetry of female meiosis.
Collapse
Affiliation(s)
- Stacey L Hanlon
- Genetics and Genomics, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Sen S, Dodamani A, Nambiar M. Emerging mechanisms and roles of meiotic crossover repression at centromeres. Curr Top Dev Biol 2022; 151:155-190. [PMID: 36681469 DOI: 10.1016/bs.ctdb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.
Collapse
Affiliation(s)
- Sucharita Sen
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ananya Dodamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
9
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wesley ER, Hawley RS, Billmyre KK. Genetic background impacts the timing of synaptonemal complex breakdown in Drosophila melanogaster. Chromosoma 2020; 129:243-254. [PMID: 33068154 PMCID: PMC7666587 DOI: 10.1007/s00412-020-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Experiments performed in different genetic backgrounds occasionally exhibit failure in experimental reproducibility. This is a serious issue in Drosophila where there are no standard control stocks. Here, we illustrate the importance of controlling genetic background by showing that the timing of a major meiotic event, the breakdown of the synaptonemal complex (SC), varies in different genetic backgrounds. We assessed SC breakdown in three different control stocks and found that in one control stock, y w; svspa-pol, the SC broke down earlier than in Oregon-R and w1118 stocks. We further examined SC breakdown in these three control backgrounds with flies heterozygous for a null mutation in c(3)G, which encodes a key structural component of the SC. Flies heterozygous for c(3)G displayed differences in the timing of SC breakdown in different control backgrounds, providing evidence of a sensitizing effect of this mutation. These observations suggest that SC maintenance is associated with the dosage of c(3)G in some backgrounds. Lastly, chromosome segregation was not affected by premature SC breakdown in mid-prophase, consistent with previous findings that chromosome segregation is not dependent on full-length SC in mid-prophase. Thus, genetic background is an important variable to consider with respect to SC behavior during Drosophila meiosis.
Collapse
Affiliation(s)
- Emily R Wesley
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | | |
Collapse
|
11
|
Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet 2020; 38:17-32. [PMID: 33006069 DOI: 10.1007/s10815-020-01959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance. METHODS Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review. CONCLUSIONS Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.
Collapse
|
12
|
Bonner AM, Hughes SE, Hawley RS. Regulation of Polo Kinase by Matrimony Is Required for Cohesin Maintenance during Drosophila melanogaster Female Meiosis. Curr Biol 2020; 30:715-722.e3. [PMID: 32008903 DOI: 10.1016/j.cub.2019.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Polo-like kinases (PLKs) have numerous roles in both mitosis and meiosis, including functions related to chromosome segregation, cohesin removal, and kinetochore orientation [1-7]. PLKs require specific regulation during meiosis to control those processes. Genetic studies demonstrate that the Drosophila PLK Polo kinase (Polo) is inhibited by the female meiosis-specific protein Matrimony (Mtrm) in a stoichiometric manner [8]. Drosophila Polo localizes strongly to kinetochores and to central spindle microtubules during prometaphase and metaphase I of female meiosis [9, 10]. Mtrm protein levels increase dramatically after nuclear envelope breakdown [11]. We show that Mtrm is enriched along the meiotic spindle and that loss of mtrm results in mislocalization of the catalytically active form of Polo. The mtrm gene is haploinsufficient, and heterozygosity for mtrm (mtrm/+) results in high levels of achiasmate chromosome missegregation [8, 12]. In mtrm/+ heterozygotes, there is a low level of sister centromere separation, as well as precocious loss of cohesion along the arms of achiasmate chromosomes. However, mtrm-null females are sterile [13], and sister chromatid cohesion is abolished on all chromosomes, leading to a failure to properly congress or orient chromosomes in metaphase I. These data demonstrate a requirement for the inhibition of Polo, perhaps by sequestering Polo to the microtubules during Drosophila melanogaster female meiosis and suggest that catalytically active Polo is a distinct subset of the total Polo population within the oocyte that requires its own regulation.
Collapse
Affiliation(s)
- Amanda M Bonner
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Stacie E Hughes
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
13
|
Eyster C, Chuong HH, Lee CY, Pezza RJ, Dawson D. The pericentromeric heterochromatin of homologous chromosomes remains associated after centromere pairing dissolves in mouse spermatocyte meiosis. Chromosoma 2019; 128:355-367. [PMID: 31165256 PMCID: PMC6823320 DOI: 10.1007/s00412-019-00708-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 01/27/2023]
Abstract
In meiosis, crossovers between homologous chromosomes link them together. This enables them to attach to microtubules of the meiotic spindle as a unit, such that the homologs will be pulled away from one another at anaphase I. Homologous pairs can sometimes fail to become linked by crossovers. In some organisms, these non-exchange partners are still able to segregate properly. In several organisms, associations between the centromeres of non-exchange partners occur in meiotic prophase. These associations have been proposed to promote segregation in meiosis I. But it is unclear how centromere pairing could promote subsequent proper segregation. Here we report that meiotic centromere pairing of chromosomes in mouse spermatocytes allows the formation of an association between chromosome pairs. We find that heterochromatin regions of homologous centromeres remain associated even after centromere-pairing dissolves. Our results suggest the model that, in mouse spermatocytes, heterochromatin maintains the association of homologous centromeres in the absence crossing-over.
Collapse
Affiliation(s)
- Craig Eyster
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hoa H Chuong
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chih-Ying Lee
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Dean Dawson
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
15
|
Shugoshin protects centromere pairing and promotes segregation of nonexchange partner chromosomes in meiosis. Proc Natl Acad Sci U S A 2019; 116:9417-9422. [PMID: 31019073 PMCID: PMC6511000 DOI: 10.1073/pnas.1902526116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.
Collapse
|
16
|
Jagannathan M, Cummings R, Yamashita YM. The modular mechanism of chromocenter formation in Drosophila. eLife 2019; 8:43938. [PMID: 30741633 PMCID: PMC6382350 DOI: 10.7554/elife.43938] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
A central principle underlying the ubiquity and abundance of pericentromeric satellite DNA repeats in eukaryotes has remained poorly understood. Previously we proposed that the interchromosomal clustering of satellite DNAs into nuclear structures known as chromocenters ensures encapsulation of all chromosomes into a single nucleus (Jagannathan et al., 2018). Chromocenter disruption led to micronuclei formation, resulting in cell death. Here we show that chromocenter formation is mediated by a ‘modular’ network, where associations between two sequence-specific satellite DNA-binding proteins, D1 and Prod, bound to their cognate satellite DNAs, bring the full complement of chromosomes into the chromocenter. D1 prod double mutants die during embryogenesis, exhibiting enhanced phenotypes associated with chromocenter disruption, revealing the universal importance of satellite DNAs and chromocenters. Taken together, we propose that associations between chromocenter modules, consisting of satellite DNA binding proteins and their cognate satellite DNA, package the Drosophila genome within a single nucleus.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Ryan Cummings
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
17
|
Bonner AM, Hawley RS. Functional Consequences of the Evolution of Matrimony, a Meiosis-Specific Inhibitor of Polo Kinase. Mol Biol Evol 2019; 36:69-83. [PMID: 30351378 PMCID: PMC6340472 DOI: 10.1093/molbev/msy197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Meiosis is a defining characteristic of eukaryotes, believed to have evolved only once, over one billion years ago. While the general progression of meiotic events is conserved across multiple diverse organisms, the specific pathways and proteins involved can be highly divergent, even within species from the same genus. Here we investigate the rapid evolution of Matrimony (Mtrm), a female meiosis-specific regulator of Polo kinase (Polo) in Drosophila. Mtrm physically interacts with Polo and is required to restrict the activity of Polo during meiosis. Despite Mtrm’s critical role in meiosis, sequence conservation within the genus Drosophila is poor. To explore the functional significance of this rapid divergence, we expressed Mtrm proteins from 12 different Drosophila species in the Drosophila melanogaster female germline. Distantly related Mtrm homologs are able to both physically interact with D. melanogaster Polo and rescue the meiotic defects seen in mtrm mutants. However, these distant homologs are not properly degraded after the completion of meiosis. Rather, they continue to inhibit Polo function in the early embryo, resulting in dominant maternal-effect lethality. We show that the ability of Mtrm to be properly degraded, and thus release Polo, is partially due to residues or motifs found within Mtrm’s least-conserved regions. We hypothesize that, while Mtrm regions critical for its meiotic function are under strong purifying selection, changes that occurred in its unconserved regions may have been advantageous, potentially by affecting the timing or duration of meiosis and/or the early embryonic divisions.
Collapse
Affiliation(s)
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
18
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
19
|
Jagannathan M, Yamashita YM. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:319-327. [PMID: 29610245 DOI: 10.1101/sqb.2017.82.034504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
20
|
Modulating Crossover Frequency and Interference for Obligate Crossovers in Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2017; 7:1511-1524. [PMID: 28315832 PMCID: PMC5427503 DOI: 10.1534/g3.117.040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiotic crossover frequencies show wide variation among organisms. But most organisms maintain at least one crossover per homolog pair (obligate crossover). In Saccharomyces cerevisiae, previous studies have shown crossover frequencies are reduced in the mismatch repair related mutant mlh3Δ and enhanced in a meiotic checkpoint mutant pch2Δ by up to twofold at specific chromosomal loci, but both mutants maintain high spore viability. We analyzed meiotic recombination events genome-wide in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ mutants to test the effect of variation in crossover frequency on obligate crossovers. mlh3Δ showed ∼30% genome-wide reduction in crossovers (64 crossovers per meiosis) and loss of the obligate crossover, but nonexchange chromosomes were efficiently segregated. pch2Δ showed ∼50% genome-wide increase in crossover frequency (137 crossovers per meiosis), elevated noncrossovers as well as loss of chromosome size dependent double-strand break formation. Meiotic defects associated with pch2∆ did not cause significant increase in nonexchange chromosome frequency. Crossovers were restored to wild-type frequency in the double mutant mlh3Δ pch2Δ (100 crossovers per meiosis), but obligate crossovers were compromised. Genetic interference was reduced in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ. Triple mutant analysis of mlh3Δ pch2Δ with other resolvase mutants showed that most of the crossovers in mlh3Δ pch2Δ are made through the Mus81-Mms4 pathway. These results are consistent with a requirement for increased crossover frequencies in the absence of genetic interference for obligate crossovers. In conclusion, these data suggest crossover frequencies and the strength of genetic interference in an organism are mutually optimized to ensure obligate crossovers.
Collapse
|
21
|
Hartmann MA, Sekelsky J. The absence of crossovers on chromosome 4 in Drosophila melanogaster: Imperfection or interesting exception? Fly (Austin) 2017; 11:253-259. [PMID: 28426351 PMCID: PMC5721948 DOI: 10.1080/19336934.2017.1321181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drosophila melanogaster chromosome 4 is an anomaly because of its small size, chromatin structure, and most notably its lack of crossing over during meiosis. Earlier ideas about the absence of crossovers on 4 hypothesize that these unique characteristics function to prevent crossovers. Here, we explore hypotheses about the absence of crossovers on 4, how these have been addressed, and new insights into the mechanism behind this suppression. We review recently published results that indicate that global crossover patterning, in particular the centromere effect, make a major contribution to the prevention of crossovers on 4.
Collapse
Affiliation(s)
- Michaelyn A Hartmann
- a Curriculum in Genetics and Molecular Biology , University of North Carolina , Chapel Hill , North Carolina , USA
| | - Jeff Sekelsky
- a Curriculum in Genetics and Molecular Biology , University of North Carolina , Chapel Hill , North Carolina , USA.,b Department of Biology , University of North Carolina , Chapel Hill , North Carolina , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , North Carolina , USA
| |
Collapse
|
22
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
23
|
|
24
|
Heterochromatin-Associated Proteins HP1a and Piwi Collaborate to Maintain the Association of Achiasmate Homologs in Drosophila Oocytes. Genetics 2016; 203:173-89. [PMID: 26984058 DOI: 10.1534/genetics.115.186460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes. Proper segregation of these achiasmate homologs relies on their pericentric heterochromatin-mediated association, but the mechanism(s) underlying this attachment remains poorly understood. Using an inducible RNA interference (RNAi) strategy combined with fluorescence in situ hybridization (FISH) to monitor centromere proximal association of the achiasmate FM7a/X homolog pair, we asked whether specific heterochromatin-associated proteins are required for the association and proper segregation of achiasmate homologs in Drosophila oocytes. When we knock down HP1a, H3K9 methytransferases, or the HP1a binding partner Piwi during mid-prophase, we observe significant disruption of pericentric heterochromatin-mediated association of FM7a/X homologs. Furthermore, for both HP1a and Piwi knockdown oocytes, transgenic coexpression of the corresponding wild-type protein is able to rescue RNAi-induced defects, but expression of a mutant protein with a single amino acid change that disrupts the HP1a-Piwi interaction is unable to do so. We show that Piwi is stably bound to numerous sites along the meiotic chromosomes, including centromere proximal regions. In addition, reduction of HP1a or Piwi during meiotic prophase induces a significant increase in FM7a/X segregation errors. We present a speculative model outlining how HP1a and Piwi could collaborate to keep achiasmate chromosomes associated in a homology-dependent manner.
Collapse
|
25
|
Lake CM, Nielsen RJ, Guo F, Unruh JR, Slaughter BD, Hawley RS. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila. eLife 2015; 4:e08287. [PMID: 26452093 PMCID: PMC4703084 DOI: 10.7554/elife.08287] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023] Open
Abstract
Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with the DSB accessory protein Mei-P22, and localizes to those DSB sites that will mature into crossovers. In early pachytene Vilya localizes along the central region of the synaptonemal complex and to discrete foci. The accumulation of Vilya at foci is dependent on DSB formation. Immuno-electron microscopy demonstrates that Vilya is a component of recombination nodules, which mark the sites of crossover formation. Thus Vilya links the mechanism of DSB formation to either the selection of those DSBs that will become crossovers or to the actual process of crossing over.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, United States
| | - Rachel J Nielsen
- Stowers Institute for Medical Research, Kansas City, United States
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, United States
| |
Collapse
|
26
|
Smukowski Heil CS, Ellison C, Dubin M, Noor MAF. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila. Genome Biol Evol 2015; 7:2829-42. [PMID: 26430062 PMCID: PMC4684701 DOI: 10.1093/gbe/evv182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.
Collapse
Affiliation(s)
- Caiti S Smukowski Heil
- Biology Department, Duke University Genome Sciences Department, University of Washington
| | - Chris Ellison
- Department of Integrative Biology, University of California, Berkeley
| | | | | |
Collapse
|
27
|
Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD. Regulation and Function of Maternal Gene Products During the Maternal-to-Zygotic Transition in Drosophila. Curr Top Dev Biol 2015; 113:43-84. [PMID: 26358870 DOI: 10.1016/bs.ctdb.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila late-stage oocytes and early embryos are transcriptionally silent. Thus, control of gene expression during these developmental periods is posttranscriptional and posttranslational. Global changes in the transcriptome and proteome occur during oocyte maturation, after egg activation and fertilization, and upon zygotic genome activation. We review the scale, content, and dynamics of these global changes; the factors that regulate these changes; and the mechanisms by which they are accomplished. We highlight the intimate relationship between the clearance of maternal gene products and the activation of the embryo's own genome, and discuss the fact that each of these complementary components of the maternal-to-zygotic transition can be subdivided into several phases that serve different biological roles and are regulated by distinct factors.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Kurdzo EL, Dawson DS. Centromere pairing--tethering partner chromosomes in meiosis I. FEBS J 2015; 282:2458-70. [PMID: 25817724 PMCID: PMC4490064 DOI: 10.1111/febs.13280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans.
Collapse
Affiliation(s)
- Emily L Kurdzo
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, and Department of Cell Biology, University of Oklahoma, Health Science Center, OK, USA
| |
Collapse
|
29
|
Gilliland WD, Colwell EM, Lane FM, Snouffer AA. Behavior of aberrant chromosome configurations in Drosophila melanogaster female meiosis I. G3 (BETHESDA, MD.) 2014; 5:175-82. [PMID: 25491942 PMCID: PMC4321026 DOI: 10.1534/g3.114.014316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022]
Abstract
One essential role of the first meiotic division is to reduce chromosome number by half. Although this is normally accomplished by segregating homologous chromosomes from each other, it is possible for a genome to have one or more chromosomes that lack a homolog (such as compound chromosomes), or have chromosomes with multiple potential homologs (such as in XXY females). These configurations complete meiosis but engage in unusual segregation patterns. In Drosophila melanogaster females carrying two compound chromosomes, the compounds can accurately segregate from each other, a process known as heterologous segregation. Similarly, in XXY females, when the X chromosomes fail to cross over, they often undergo secondary nondisjunction, where both Xs segregate away from the Y. Although both of these processes have been known for decades, the orientation mechanisms involved are poorly understood. Taking advantage of the recent discovery of chromosome congression in female meiosis I, we have examined a number of different aberrant chromosome configurations. We show that these genotypes complete congression normally, with their chromosomes bioriented at metaphase I arrest at the same rates that they segregate, indicating that orientation must be established during prometaphase I before congression. We also show that monovalent chromosomes can move out on the prometaphase I spindle, but the dot 4 chromosomes appear required for this movement. Finally, we show that, similar to achiasmate chromosomes, heterologous chromosomes can be connected by chromatin threads, suggesting a mechanism for how heterochromatic homology establishes these unusual biorientation patterns.
Collapse
Affiliation(s)
- William D Gilliland
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614-3207
| | - Eileen M Colwell
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614-3207
| | - Fiona M Lane
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614-3207
| | - Ashley A Snouffer
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614-3207 Department of Genetics, University of Georgia, Athens, Athens, Georgia 30602-2607
| |
Collapse
|
30
|
Variation in crossover frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccharomyces cerevisiae. Genetics 2014; 199:399-412. [PMID: 25467183 PMCID: PMC4317650 DOI: 10.1534/genetics.114.172320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The segregation of homologous chromosomes during the Meiosis I division requires an obligate crossover per homolog pair (crossover assurance). In Saccharomyces cerevisiae and mammals, Msh4 and Msh5 proteins stabilize Holliday junctions and its progenitors to facilitate crossing over. S. cerevisiae msh4/5 hypomorphs that reduce crossover levels up to twofold at specific loci on chromosomes VII, VIII, and XV without affecting homolog segregation were identified recently. We use the msh4–R676W hypomorph to ask if the obligate crossover is insulated from variation in crossover frequencies, using a S. cerevisiae S288c/YJM789 hybrid to map recombination genome-wide. The msh4–R676W hypomorph made on average 64 crossovers per meiosis compared to 94 made in wild type and 49 in the msh4Δ mutant confirming the defect seen at individual loci on a genome-wide scale. Crossover reductions in msh4–R676W and msh4Δ were significant across chromosomes regardless of size, unlike previous observations made at specific loci. The msh4–R676W hypomorph showed reduced crossover interference. Although crossover reduction in msh4–R676W is modest, 42% of the four viable spore tetrads showed nonexchange chromosomes. These results, along with modeling of crossover distribution, suggest the significant reduction in crossovers across chromosomes and the loss of interference compromises the obligate crossover in the msh4 hypomorph. The high spore viability of the msh4 hypomorph is maintained by efficient segregation of the natural nonexchange chromosomes. Our results suggest that variation in crossover frequencies can compromise the obligate crossover and also support a mechanistic role for interference in obligate crossover formation.
Collapse
|
31
|
Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence. Genetics 2014; 199:73-83. [PMID: 25406466 DOI: 10.1534/genetics.114.172072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12-13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.
Collapse
|
32
|
Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics 2014; 198:947-65. [PMID: 25194162 PMCID: PMC4224182 DOI: 10.1534/genetics.114.166009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.
Collapse
Affiliation(s)
- Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Sharon E Thomas
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Rihui Yan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Hirotsugu Yamada
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Igor B Zhulin
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
33
|
Topoisomerase II is required for the proper separation of heterochromatic regions during Drosophila melanogaster female meiosis. PLoS Genet 2014; 10:e1004650. [PMID: 25340780 PMCID: PMC4207608 DOI: 10.1371/journal.pgen.1004650] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023] Open
Abstract
Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomerase II (Top2) by RNAi in the later stages of meiosis results in a specific defect in the separation of heterochromatic regions after spindle assembly. In Top2 RNAi-expressing oocytes, heterochromatic regions of both achiasmate and chiasmate chromosomes often failed to separate during prometaphase I and metaphase I. Heterochromatic regions were stretched into long, abnormal projections with centromeres localizing near the tips of the projections in some oocytes. Despite these anomalies, we observed bipolar spindles in most Top2 RNAi-expressing oocytes, although the obligately achiasmate 4th chromosomes exhibited a near complete failure to move toward the spindle poles during prometaphase I. Both achiasmate and chiasmate chromosomes displayed defects in biorientation. Given that euchromatic regions separate much earlier in prophase, no defects were expected or observed in the ability of euchromatic regions to separate during late prophase upon knockdown of Top2 at mid-prophase. Finally, embryos from Top2 RNAi-expressing females frequently failed to initiate mitotic divisions. These data suggest both that Topoisomerase II is involved in the resolution of heterochromatic DNA entanglements during meiosis I and that these entanglements must be resolved in order to complete meiosis. Proper chromosome segregation during egg and sperm development is crucial to prevent birth defects and miscarriage. During chromosome replication, DNA entanglements are created that must be resolved before chromosomes can fully separate. In the oocytes of the fruit fly Drosophila melanogaster, DNA entanglements persist between heterochromatic regions of the chromosomes until after spindle assembly and may facilitate the proper segregation of chromosomes during meiosis. Topoisomerase II enzymes can resolve DNA entanglements by cutting and untwisting tangled DNA. Decreasing Topoisomerase II (Top2) levels in the ovaries of fruit flies led to sterility. RNAi knockdown of the Top2 gene in oocytes resulted in chromosomes that failed to fully separate their heterochromatic regions during meiosis I and caused oocytes to arrest in meiosis I. These studies demonstrate that the Top2 enzyme is required for releasing DNA entanglements between homologous chromosomes before the onset of chromosome segregation during Drosophila female meiosis.
Collapse
|
34
|
Abstract
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.
Collapse
|
35
|
Bauerly E, Hughes SE, Vietti DR, Miller DE, McDowell W, Hawley RS. Discovery of supernumerary B chromosomes in Drosophila melanogaster. Genetics 2014; 196:1007-16. [PMID: 24478336 PMCID: PMC4286233 DOI: 10.1534/genetics.113.160556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/25/2014] [Indexed: 01/29/2023] Open
Abstract
B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4(th) chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4(th) chromosome heterochromatin, the B chromosomes lack most, if not all, 4(th) chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes.
Collapse
Affiliation(s)
| | - Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Dana R. Vietti
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri 65201
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
36
|
Da Ines O, Gallego ME, White CI. Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. MOLECULAR PLANT 2014; 7:492-501. [PMID: 24375719 DOI: 10.1093/mp/sst172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Meiosis is the specialized eukaryotic cell division that permits the halving of ploidy necessary for gametogenesis in sexually reproducing organisms. This involves a single round of DNA replication followed by two successive divisions. To ensure balanced segregation, homologous chromosome pairs must migrate to opposite poles at the first meiotic division and this means that they must recognize and pair with each other beforehand. Although understanding of the mechanisms by which meiotic chromosomes find and pair with their homologs has greatly advanced, it remains far from being fully understood. With some notable exceptions such as male Drosophila, the recognition and physical linkage of homologs at the first meiotic division involves homologous recombination. However, in addition to this, it is clear that many organisms, including plants, have also evolved a series of recombination-independent mechanisms to facilitate homolog recognition and pairing. These implicate chromosome structure and dynamics, telomeres, centromeres, and, most recently, small RNAs. With a particular focus on plants, we present here an overview of understanding of these early, recombination-independent events that act in the pairing of homologous chromosomes during the first meiotic division.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171 Aubière, France
| | | | | |
Collapse
|
37
|
Obeso D, Pezza RJ, Dawson D. Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis. Chromosoma 2013; 123:43-55. [PMID: 24126501 DOI: 10.1007/s00412-013-0439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Collapse
Affiliation(s)
- David Obeso
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | | |
Collapse
|
38
|
Whitfield ZJ, Chisholm J, Hawley RS, Orr-Weaver TL. A meiosis-specific form of the APC/C promotes the oocyte-to-embryo transition by decreasing levels of the Polo kinase inhibitor matrimony. PLoS Biol 2013; 11:e1001648. [PMID: 24019759 PMCID: PMC3760765 DOI: 10.1371/journal.pbio.1001648] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/23/2013] [Indexed: 11/23/2022] Open
Abstract
During the oocyte-to-embryo transition in Drosophila, degradation of the Polo kinase inhibitor, Matrimony, depends on Cortex, a meiosis-specific form of the Anaphase Promoting Complex/Cyclosome that is required for the oocyte's normal transition from meiosis to mitosis. Oocytes are stockpiled with proteins and mRNA that are required to drive the initial mitotic divisions of embryogenesis. But are there proteins specific to meiosis whose levels must be decreased to begin embryogenesis properly? The Drosophila protein Cortex (Cort) is a female, meiosis-specific activator of the Anaphase Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. We performed immunoprecipitation of Cortex followed by mass spectrometry, and identified the Polo kinase inhibitor Matrimony (Mtrm) as a potential interactor with Cort. In vitro binding assays showed Mtrm and Cort can bind directly. We found Mtrm protein levels to be reduced dramatically during the oocyte-to-embryo transition, and this downregulation did not take place in cort mutant eggs, consistent with Mtrm being a substrate of APCCort. We showed that Mtrm is subject to APCCort-mediated proteasomal degradation and have identified a putative APC/C recognition motif in Mtrm that when mutated partially stabilized the protein in the embryo. Furthermore, overexpression of Mtrm in the early embryo caused aberrant nuclear divisions and developmental defects, and these were enhanced by decreasing levels of active Polo. These data indicate APCCort ubiquitylates Mtrm at the oocyte-to-embryo transition, thus preventing excessive inhibition of Polo kinase activity due to Mtrm's presence. Despite their many differences, the meiotic and mitotic divisions of the early embryo take place within the same cytoplasmic space. The oocyte-to-embryo transition is the process by which an oocyte, which initially undergoes meiosis, becomes “adapted” to support the rapid mitotic divisions of embryogenesis. This involves fertilization as well as the stockpiling of proteins and mRNA for the transcriptionally silent early embryo. The Anaphase Promoting Complex/Cyclosome (APC/C) is a large protein complex that is active during both mitosis and meiosis and is responsible for targeting certain proteins for degradation. The discovery of the existence of APC/C activators that are present only during meiosis hinted at the possibility that this complex also functions to regulate protein degradation during the oocyte-to-embryo transition. Here we study Cortex, a female- and meiosis-specific activator of the APC/C in the fruit fly Drosophila melanogaster. We find that Cortex activity is necessary for the degradation of Matrimony, a key regulator of female meiosis in Drosophila. Matrimony itself inhibits Polo kinase, another important regulator of both mitosis and meiosis that also functions in chromosome segregation, centrosome dynamics, and cytokinesis. When excess Matrimony protein is not removed from the early embryo, developmental defects arise. Together our findings demonstrate that the precise regulation of Matrimony levels in the egg is necessary for the switch from meiosis to mitosis.
Collapse
Affiliation(s)
- Zachary J. Whitfield
- Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer Chisholm
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Terry L. Orr-Weaver
- Whitehead Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS Genet 2013; 9:e1003637. [PMID: 23874232 PMCID: PMC3715423 DOI: 10.1371/journal.pgen.1003637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. Sexual reproduction entails an intricate 2-step division called meiosis in which homologous chromosomes and sister chromatids are sequentially segregated to yield gametes (eggs and sperm) with exactly one copy of each chromosome. The Drosophila meiosis protein SOLO is essential for cohesion between sister chromatids. SOLO localizes to centromeres throughout meiosis where it collaborates with the conserved cohesin complex to enable sister centromeres to orient properly – to the same pole during the first division and to opposite poles during the second division. In solo mutants, sister chromatids become disconnected early in meiosis and segregate randomly through both meiotic divisions generating gametes with random (and mostly wrong) numbers of chromosomes. In this study we show that SOLO also localizes to chromosome arms where it is required to construct stable synaptonemal complexes that connect homologs while they recombine. In addition, SOLO is required to prevent crossovers between sister chromatids, as only homolog crossovers are useful for forming the interhomolog connections (chiasmata) needed for homolog segregation. SOLO collaborates with cohesin for these tasks as well. We propose that SOLO is a subunit of a specialized meiotic cohesin complex and a multi-purpose cohesion protein that regulates several meiotic processes needed for proper chromosome segregation.
Collapse
Affiliation(s)
- Rihui Yan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
40
|
Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains. Proc Natl Acad Sci U S A 2013; 110:E1222-31. [PMID: 23479640 DOI: 10.1073/pnas.1301690110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm's C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo's interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.
Collapse
|
41
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Nondisjunctional segregations in Drosophila female meiosis I are preceded by homolog malorientation at metaphase arrest. Genetics 2012; 193:443-51. [PMID: 23222652 PMCID: PMC3567735 DOI: 10.1534/genetics.112.146241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The model of Drosophila female meiosis I was recently revised by the discovery that chromosome congression precedes metaphase I arrest. Use of the prior framework to interpret data from meiotic mutants led to the conclusion that chromosome segregation errors (nondisjunction, NDJ) occurred when nonexchange chromosomes moved out on the spindle in a maloriented configuration and became trapped there at metaphase arrest. The discovery that congression returns nonexchange chromosomes to the metaphase plate invalidates this interpretation and raises the question of what events actually do lead to NDJ. To address this, we have assayed an allelic series of ald (mps1) meiotic mutants that complete congression at wild-type rates, but have widely varying NDJ rates in an otherwise isogenic background, as well as a nod mutant background that primarily undergoes loss of chromosome 4. Using genetic assays to measure NDJ rates, and FISH assays to measure chromosome malorientation rates in metaphase-arrested oocytes, shows that these two rates are highly correlated across ald mutants, suggesting that malorientation during congression commits these chromosomes to eventually nondisjoin. Likewise, the rate of chromosome loss observed in nod is similar to the rate at which these chromosomes fail to associate with the main chromosome mass. Together these results provide a proximal mechanism for how these meiotic mutants cause NDJ and chromosome loss and improve our understanding of how prometaphase chromosome congression relates to anaphase chromosome segregation.
Collapse
|
43
|
McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012; 10:e1001422. [PMID: 23152720 PMCID: PMC3496668 DOI: 10.1371/journal.pbio.1001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Recombination rate in Drosophila species shapes the impact of selection in the genome and is positively correlated with nucleotide diversity. One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. Individuals within a species differ in the DNA sequences of their genes. This sequence variation affects how well individuals survive or reproduce and is transmitted to their offspring. Genes near each other on individual chromosomes tend to be passed to offspring together—neighboring genes are unlikely to be separated by exchanges of genetic material derived from different parents during meiotic recombination. When genes are inherited together, however, the evolutionary forces acting on one gene can interfere with variation at its neighbors. Thus, variation at multiple genes can be lost if natural selection acts on one gene in close proximity. Recombination can prevent or reduce this loss of variation, but previous tests of this phenomenon failed to account for recombination rate differences between species. In this study, we show that some parts of the genome differ in recombination rate between two species of fruit fly, Drosophila pseudoobscura and D. miranda. Avoiding an assumption made in previous studies, we then examine sequence variation within and between fly species in those parts of the genome that have conserved recombination rates. Based on the results, we conclude that recombination indeed preserves variation within species that would otherwise have been eliminated by natural selection.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
44
|
A germline clone screen on the X chromosome reveals novel meiotic mutants in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2012; 2:1369-77. [PMID: 23173088 PMCID: PMC3484667 DOI: 10.1534/g3.112.003723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/06/2012] [Indexed: 11/28/2022]
Abstract
In an effort to isolate novel meiotic mutants that are severely defective in chromosome segregation and/or exchange, we employed a germline clone screen of the X chromosome of Drosophila melanogaster. We screened over 120,000 EMS-mutagenized chromosomes and isolated 19 mutants, which comprised nine complementation groups. Four of these complementation groups mapped to known meiotic genes, including mei-217, mei-218, mei-9, and nod. Importantly, we have identified two novel complementation groups with strong meiotic phenotypes, as assayed by X chromosome nondisjunction. One complementation group is defined by three alleles, and the second novel complementation group is defined by a single allele. All 19 mutants are homozygous viable, fertile, and fully recessive. Of the 9 mutants that have been molecularly characterized, 5 are canonical EMS-induced transitions, and the remaining 4 are transversions. In sum, we have identified two new genes that are defined by novel meiotic mutants, in addition to isolating new alleles of mei-217, mei-218, mei-9, and nod.
Collapse
|
45
|
Heil CSS, Noor MAF. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila. PLoS One 2012; 7:e45055. [PMID: 23028758 PMCID: PMC3445564 DOI: 10.1371/journal.pone.0045055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023] Open
Abstract
In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.
Collapse
Affiliation(s)
- Caiti S S Heil
- Department of Biology, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
46
|
|
47
|
Qiao H, Chen JK, Reynolds A, Höög C, Paddy M, Hunter N. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet 2012; 8:e1002790. [PMID: 22761591 PMCID: PMC3386176 DOI: 10.1371/journal.pgen.1002790] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/10/2012] [Indexed: 11/24/2022] Open
Abstract
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. Gamete cells, such as sperm and eggs, form via the specialized cell division called meiosis. Essential and interdependent features of meiosis include the pairing, recombination, and segregation of maternal and paternal chromosomes. Chromosome pairing culminates with formation of synaptonemal complexes (SCs), zipper-like structures that connect the structural cores or axes of homologous chromosomes. Although SC is known to be important for crossover recombination, details of its function remain enigmatic. In this study, we analyze mouse spermatocytes to investigate the interplay between SC, recombination, and centromeres (the structures that direct chromosome segregation). We show that SC prevents unregulated interactions between chromosome axes. This function appears to be especially important at chromosome ends and at crossover sites where DNA exchange must be coordinated with structural exchange of chromosome axes. We also show that centromeres remain associated by short fragments of SC after general chromosome desynapsis has occurred. Furthermore, we detect a distinct type of inter-centromeric connection that persists even after centromeres desynapse. Such connections may facilitate the segregation of chromosomes that have failed to crossover. Together, our data provide new insights into the functions of SC and raise the possibility of a back-up chromosome segregation system in mammals analogous to those described in fruit flies and budding yeast.
Collapse
Affiliation(s)
- Huanyu Qiao
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Jefferson K. Chen
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - April Reynolds
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Paddy
- Microscopy and Imaging Facility, Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute and Departments of Microbiology, Molecular and Cellular Biology, and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
49
|
How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. GENETICS RESEARCH INTERNATIONAL 2012; 2012:430136. [PMID: 22567387 PMCID: PMC3335601 DOI: 10.1155/2012/430136] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/24/2011] [Indexed: 12/31/2022]
Abstract
Satellites are one of the most enigmatic parts of the eukaryotic genome. These highly repetitive, noncoding sequences make up as much as half or more of the genomic content and are known to play essential roles in chromosome segregation during meiosis and mitosis, yet they evolve rapidly between closely related species. Research over the last several decades has revealed that satellite divergence can serve as a formidable reproductive barrier between sibling species. Here we highlight several key studies on Drosophila and other model organisms demonstrating deleterious effects of satellites and their rapid evolution on the structure and function of chromosomes in interspecies hybrids. These studies demonstrate that satellites can impact chromosomes at a number of different developmental stages and through distinct cellular mechanisms, including heterochromatin formation. These findings have important implications for how loci that cause postzygotic reproductive isolation are viewed.
Collapse
|
50
|
Tsai JH, McKee BD. Homologous pairing and the role of pairing centers in meiosis. J Cell Sci 2011; 124:1955-63. [PMID: 21625006 DOI: 10.1242/jcs.006387] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.
Collapse
Affiliation(s)
- Jui-He Tsai
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|