1
|
Wu W, Huang R, Wu Q, Li P, Chen J, Li B, Liu H. The role of Six1 in the genesis of muscle cell and skeletal muscle development. Int J Biol Sci 2014; 10:983-9. [PMID: 25210496 PMCID: PMC4159689 DOI: 10.7150/ijbs.9442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023] Open
Abstract
The sine oculis homeobox 1 (Six1) gene encodes an evolutionarily conserved transcription factor. In the past two decades, much research has indicated that Six1 is a powerful regulator participating in skeletal muscle development. In this review, we summarized the discovery and structural characteristics of Six1 gene, and discussed the functional roles and molecular mechanisms of Six1 in myogenesis and in the formation of skeletal muscle fibers. Finally, we proposed areas of future interest for understanding Six1 gene function.
Collapse
Affiliation(s)
- Wangjun Wu
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Ruihua Huang
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Qinghua Wu
- 3. College of Life Science, Yangtze University, Jingzhou, Hubei, 434023, China. ; 4. Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kradec Kralove, Hradec Kralove, Czech Republic
| | - Pinghua Li
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; ; 2. Huaian Academy of Nanjing Agricultural University, Huaian, Jiangsu, 223001, China
| | - Jie Chen
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bojiang Li
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- 1. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Li Y, Jiang Y, Chen Y, Karandikar U, Hoffman K, Chattopadhyay A, Mardon G, Chen R. optix functions as a link between the retinal determination network and the dpp pathway to control morphogenetic furrow progression in Drosophila. Dev Biol 2013; 381:50-61. [PMID: 23792115 DOI: 10.1016/j.ydbio.2013.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein-protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.
Collapse
Affiliation(s)
- Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77303, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Anderson AM, Weasner BM, Weasner BP, Kumar JP. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development. Development 2012; 139:991-1000. [PMID: 22318629 DOI: 10.1242/dev.077255] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The SIX family of homeodomain-containing DNA-binding proteins play crucial roles in both Drosophila and vertebrate retinal specification. In flies, three such family members exist, but only two, Sine oculis (So) and Optix, are expressed and function within the eye. In vertebrates, the homologs of Optix (Six3 and Six6) and probably So (Six1 and Six2) are also required for proper eye formation. Depending upon the individual SIX protein and the specific developmental context, transcription of target genes can either be activated or repressed. These activities are thought to occur through physical interactions with the Eyes absent (Eya) co-activator and the Groucho (Gro) co-repressor, but the relative contribution that each complex makes to overall eye development is not well understood. Here, we attempt to address this issue by investigating the role that each complex plays in the induction of ectopic eyes in Drosophila. We fused the VP16 activation and Engrailed repressor domains to both So and Optix, and attempted to generate ectopic eyes with these chimeric proteins. Surprisingly, we find that So and Optix must initially function as transcriptional repressors to trigger the formation of ectopic eyes. Both factors appear to be required to repress the expression of non-retinal selector genes. We propose that during early phases of eye development, SIX proteins function, in part, to repress the transcription of non-retinal selector genes, thereby allowing induction of the retina to proceed. This model of repression-mediated induction of developmental programs could have implications beyond the eye and might be applicable to other systems.
Collapse
|
4
|
Qamar L, Deitsch E, Patrick AN, Post MD, Spillman MA, Iwanaga R, Thorburn A, Ford HL, Behbakht K. Specificity and prognostic validation of a polyclonal antibody to detect Six1 homeoprotein in ovarian cancer. Gynecol Oncol 2012; 125:451-7. [PMID: 22333994 DOI: 10.1016/j.ygyno.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/18/2012] [Accepted: 02/04/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The presence of Six1 mRNA gene portends a poor prognosis in ovarian cancer. We describe validation of a Six1 specific antibody and evaluate its association with tumorigenicity and prognosis in ovarian cancer. METHODS A Six1 antibody (Six1cTerm) was raised to residues downstream of the Six1 homeodomain, representing its unique C-terminus as compared to other Six family members. Cells were transfected with Six1-Six6 and Western blot was performed to demonstrate Six1 specificity. Ovarian cancer cell lines were analyzed for Six1 mRNA and Six1cTerm and tumorigenicity was evaluated. Ovarian cancer tissue microarrays (OTMA) were analyzed for Six1cTerm by immunohistochemistry and scored by two blinded observers. The metastatic tumors of 15 stage IIIC high grade serous ovarian cancers were analyzed with Six1 mRNA and Six1cTerm and expression was compared to clinical factors and survival. RESULTS The Six1cTerm antibody is specific for Six1. Cell line tumorigenicity in SCID mice correlates with Six1 levels both by mRNA(p=0.001, Mann-Whitney U test) and by protein (presence vs. absence, p=0.05 Fischer's Exact test). Six1 protein was present in up to 54% of OTMA specimens. Six1 protein expression in omental/peritoneal metastases correlated with worsened survival in a sample (n=15) of high grade serous stage IIIC ovarian cancers (p=0.001). CONCLUSIONS The Six1cTerm antibody is specific and able to detect Six1 in cell lines and tumor tissue. Six1 protein detection is common in ovarian cancer and is associated with tumorigenicity and poor prognosis in this group of patient samples. Six1cTerm antibody should be further validated as prognostic tool.
Collapse
Affiliation(s)
- Lubna Qamar
- Department of Obstetrics and Gynecology and Section of Basic Reproductive Sciences, University of Colorado Denver and Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Beccari L, Conte I, Cisneros E, Bovolenta P. Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development 2012; 139:151-64. [PMID: 22096077 DOI: 10.1242/dev.067660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vertebrate forebrain is patterned during gastrulation into telencephalic, retinal, hypothalamic and diencephalic primordia. Specification of each of these domains requires the concerted activity of combinations of transcription factors (TFs). Paradoxically, some of these factors are widely expressed in the forebrain, which raises the question of how they can mediate regional differences. To address this issue, we focused on the homeobox TF Six3.2. With genomic and functional approaches we demonstrate that, in medaka fish, Six3.2 regulates, in a concentration-dependent manner, telencephalic and retinal specification under the direct control of Sox2. Six3.2 and Sox2 have antagonistic functions in hypothalamic development. These activities are, in part, executed by Foxg1 and Rx3, which seem to be differentially and directly regulated by Six3.2 and Sox2. Together, these data delineate the mechanisms by which Six3.2 diversifies its activity in the forebrain and highlight a novel function for Sox2 as one of the main regulators of anterior forebrain development. They also demonstrate that graded levels of the same TF, probably operating in partially independent transcriptional networks, pattern the vertebrate forebrain along the anterior-posterior axis.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolas Cabrera 1, Madrid 28049, Spain
| | | | | | | |
Collapse
|
6
|
Datta RR, Cruickshank T, Kumar JP. Differential selection within the Drosophila retinal determination network and evidence for functional divergence between paralog pairs. Evol Dev 2011; 13:58-71. [PMID: 21210943 DOI: 10.1111/j.1525-142x.2010.00456.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The retinal determination (RD) network in Drosophila comprises 14 known nuclear proteins that include DNA-binding proteins, transcriptional coactivators, kinases, and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of RD genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, 10 members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the RD network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent-to-silent site substitutions (d(N)/d(S)) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared with its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
7
|
Abstract
The road to producing an eye begins with the decision to commit a population of cells to adopting an eye tissue fate, the process of retinal determination. Over the past decade and a half, a network of transcription factors has been found to mediate this process in all seeing animals. This retinal determination network is known to regulate not only tissue fate but also cell proliferation, pattern formation, compartment boundary establishment, and even retinal cell specification. The compound eye of the fruit fly, Drosophila melanogaster, has proven to be an excellent experimental system to study the mechanisms by which this network regulates organogenesis and tissue patterning. In fact the founding members of most of the gene families that make up this network were first isolated in Drosophila based on loss-of-function phenotypes that affect the eye. This chapter will highlight the history of discovery of the retinal determination network and will draw attention to the molecular and biochemical mechanisms that underlie our understanding of how the fate of the retina is determined.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Chao CH, Wang HD, Yuh CH. Complexity of cis-regulatory organization of six3a during forebrain and eye development in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2010; 10:35. [PMID: 20346166 PMCID: PMC2858731 DOI: 10.1186/1471-213x-10-35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/26/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Six3a belongs to the SIX family of homeodomain proteins and is expressed in the most anterior neural plate at the beginning of neurogenesis in various species. Though the function of Six3a as a crucial regulator of eye and forebrain development has been thoroughly investigated, the transcriptional regulation of six3a is not well understood. RESULTS To elucidate the transcriptional regulation of six3a, we performed an in vivo reporter assay. Alignment of the 21-kb region surrounding the zebrafish six3a gene with the analogous region from different species identified several conserved non-coding modules. Transgenesis in zebrafish identified two enhancer elements and one suppressor. The D module drives the GFP reporter in the forebrain and eyes at an early stage, while the A module is responsible for the later expression. The A module also works as a repressor suppressing ectopic expression from the D module. Mutational analysis further minimized the A module to four highly conserved elements and the D module to three elements. Using electrophoresis mobility shift assays, we also provided evidence for the presence of DNA-binding proteins in embryonic nuclear extracts. The transcription factors that may occupy those highly conserved elements were also predicted. CONCLUSION This study provides a comprehensive view of six3a transcription regulation during brain and eye development and offers an opportunity to establish the gene regulatory networks underlying neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Chung-Hao Chao
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- College of Life Science and Institute of Biotechnology, National Tsing-Hua University, HsinChu, Taiwan
| | - Horng-Dar Wang
- College of Life Science and Institute of Biotechnology, National Tsing-Hua University, HsinChu, Taiwan
| | - Chiou-Hwa Yuh
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- College of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, HsinChu, Taiwan
- Department of Biological Science & Technology, National Chiao Tung University, HsinChu, Taiwan
| |
Collapse
|