1
|
Zhao H, Li Z, Kong R, Shi L, Ma R, Ren X, Li Z. Novel intrinsic factor Yun maintains female germline stem cell fate through Thickveins. Stem Cell Reports 2022; 17:1914-1923. [PMID: 35985332 PMCID: PMC9481913 DOI: 10.1016/j.stemcr.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
Germline stem cells (GSCs) are critical for the reproduction of an organism. The self-renewal and differentiation of GSCs must be tightly controlled to avoid uncontrolled stem cell proliferation or premature stem cell differentiation. However, how the self-renewal and differentiation of GSCs are properly controlled is not fully understood. Here, we find that the novel intrinsic factor Yun is required for female GSC maintenance in Drosophila. GSCs undergo precocious differentiation due to de-repression of differentiation factor Bam by defective BMP/Dpp signaling in the absence of yun. Mechanistically, Yun associates with and stabilizes Thickveins (Tkv), the type I receptor of Dpp/BMP signaling. Finally, ectopic expression of a constitutively active Tkv (TkvQD) completely suppresses GSC loss caused by yun depletion. Collectively, these data demonstrate that Yun functions through Tkv to maintain GSC fate. Our results provide new insight into the regulatory mechanisms of how stem cell maintenance is properly controlled. Novel intrinsic factor Yun is required for female GSC maintenance Yun-defective GSCs undergo differentiation due to Bam upregulation Yun associates with and stabilizes Tkv to regulate GSC maintenance GSC loss in the absence of yun could be rescued by constitutively active Tkv
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xuejing Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
2
|
Autophagy is required for spermatogonial differentiation in the Drosophila testis. Biol Futur 2022; 73:187-204. [DOI: 10.1007/s42977-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
AbstractAutophagy is a conserved, lysosome-dependent catabolic process of eukaryotic cells which is involved in cellular differentiation. Here, we studied its specific role in the differentiation of spermatogonial cells in the Drosophila testis. In the apical part of the Drosophila testis, there is a niche of germline stem cells (GSCs), which are connected to hub cells. Hub cells emit a ligand for bone morhphogenetic protein (BMP)-mediated signalling that represses Bam (bag of marbles) expression in GSCs to maintain them in an undifferentiated state. GSCs divide asymmetrically, and one of the daughter cells differentiates into a gonialblast, which eventually generates a cluster of spermatogonia (SG) by mitoses. Bam is active in SG, and defects in Bam function arrest these cells at mitosis. We show that BMP signalling represses autophagy in GSCs, but upregulates the process in SG. Inhibiting autophagy in SG results in an overproliferating phenotype similar to that caused by bam mutations. Furthermore, Bam deficiency leads to a failure in downstream mechanisms of the autophagic breakdown. These results suggest that the BMP-Bam signalling axis regulates developmental autophagy in the Drosophila testis, and that acidic breakdown of cellular materials is required for spermatogonial differentiation.
Collapse
|
3
|
Dunipace L, Ákos Z, Stathopoulos A. Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization. PLoS Genet 2019; 15:e1008525. [PMID: 31830033 PMCID: PMC6932828 DOI: 10.1371/journal.pgen.1008525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/26/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022] Open
Abstract
Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5' and brk3', that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5' deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3' deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions.
Collapse
Affiliation(s)
- Leslie Dunipace
- California Institute of Technology, Pasadena, CA, United States of America
| | - Zsuzsa Ákos
- California Institute of Technology, Pasadena, CA, United States of America
| | | |
Collapse
|
4
|
Anderson EN, Wharton KA. Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences. J Biol Chem 2017; 292:19160-19178. [PMID: 28924042 DOI: 10.1074/jbc.m117.793513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Indexed: 12/27/2022] Open
Abstract
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer-mediated wing vein patterning but not for Gbb15-Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.
Collapse
Affiliation(s)
- Edward N Anderson
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
5
|
Abstract
The non-bilaterian animals comprise organisms in the phyla Porifera, Cnidaria, Ctenophora and Placozoa. These early-diverging phyla are pivotal to understanding the evolution of bilaterian animals. After the exponential increase in research in evolutionary development (evo-devo) in the last two decades, these organisms are again in the spotlight of evolutionary biology. In this work, I briefly review some aspects of the developmental biology of nonbilaterians that contribute to understanding the evolution of development and of the metazoans. The evolution of the developmental genetic toolkit, embryonic polarization, the origin of gastrulation and mesodermal cells, and the origin of neural cells are discussed. The possibility that germline and stem cell lineages have the same origin is also examined. Although a considerable number of non-bilaterian species are already being investigated, the use of species belonging to different branches of non-bilaterian lineages and functional experimentation with gene manipulation in the majority of the non-bilaterian lineages will be necessary for further progress in this field.
Collapse
Affiliation(s)
- Emilio Lanna
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
6
|
Bier E, De Robertis EM. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 2015; 348:aaa5838. [DOI: 10.1126/science.aaa5838] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro. Acta Pharmacol Sin 2013; 34:1467-74. [PMID: 23708553 DOI: 10.1038/aps.2013.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/25/2013] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate whether bone morphogenic protein-2 (BMP-2) expression was involved in calcitonin gene-related peptide (CGRP)-induced osteogenesis in human osteoblast-like cells in vitro. METHODS MG-63 osteogenic human osteosarcoma cells were treated with CGRP (10-8 mol/L) for 48 h. Cell cycle phases were determined using flow cytometry assay. The protein levels of BMP-2, ALP, Osteocalcin, ColIa1, CREB, and pCREB were measured with Western blotting, while the mRNA level of BMP-2 was measured with qR-T PCR. The expression of ALP in MG-63 cells was also studied using immunofluorescence staining. The level of cAMP was measured with ELISA assay. RESULTS CGRP treatment significantly stimulated proliferation of MG-63 cells, and increased the expression of BMP-2 and the osteogenic proteins ALP, Osteocalcin and ColIa1. Pretreatment with the BMP signaling inhibitor Noggin (100 ng/mL) did not affect CGRP-stimulated proliferation and BMP-2 expression, but abolished the CGRP-induced increases of the osteogenic proteins ALP, Osteocalcin and ColIa1. Furthermore, CGRP treatment markedly increased cAMP level in MG-63 cells, whereas pretreatment with the cAMP pathway inhibitor H89 (5 μmol/L) abolished the CGRP-induced increases of cAMP level and BMP-2 expression. CONCLUSION In MG-63 cells, the BMP pathway is involved in CGRP-induced osteogenic differentiation but not in proliferation, whereas the cAMP/pCREB pathway is involved in the expression of BMP-2.
Collapse
|
8
|
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN. The embryogenesis of the TickRhipicephalus (Boophilus) microplus: The establishment of a new chelicerate model system. Genesis 2013; 51:803-18. [DOI: 10.1002/dvg.22717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Vitória Tobias Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Amanda Fraga
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Cíntia Monteiro de Barros
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório Integrado de Morfologia; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), UFRJ Macaé, Rio de Janeiro Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcio Ribeiro Fontenele
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Helena Marcolla Araújo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Natalia Martins Feitosa
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Carlos Logullo
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos; Universidade Estadual Norte Fluminense; Campos dos Goytacazes RJ, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Li Z, Zhang Y, Han L, Shi L, Lin X. Trachea-derived dpp controls adult midgut homeostasis in Drosophila. Dev Cell 2013; 24:133-43. [PMID: 23369712 DOI: 10.1016/j.devcel.2012.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/30/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Homeostasis in adult tissues is maintained by resident stem cells and their progeny. Little is known about the regulation of tissue homeostasis by organ-organ interaction. Here we demonstrate that trachea-derived Decapentaplegic (Dpp), the main bone morphogenetic protein ligand in Drosophila, is essential for adult midgut homeostasis. We show that Dpp signaling is primarily activated in enterocytes (ECs). Depletion of Dpp signaling in ECs results in excess amounts of intestinal stem-cell-like cells and their progeny. Importantly, we find that Dpp is expressed specifically in tracheal cells that reach the intestinal cells through the visceral muscles. Depletion of dpp expression in tracheal cells phenocopies the Dpp loss-of-function defects in ECs. Our data demonstrate that the Drosophila trachea not only exchanges air for bodily needs but also produces a Dpp morphogen essential for neighboring tissue homeostasis. This work will provide important insights into the mechanisms of tissue homeostasis control by interorgan communication.
Collapse
Affiliation(s)
- Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
10
|
Marmion RA, Jevtic M, Springhorn A, Pyrowolakis G, Yakoby N. The Drosophila BMPRII, wishful thinking, is required for eggshell patterning. Dev Biol 2012; 375:45-53. [PMID: 23274688 DOI: 10.1016/j.ydbio.2012.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/13/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The Drosophila eggshell is an elaborate structure that is derived from a monolayer of follicular epithelium surrounding the developing oocyte within the female ovary. The bone morphogenetic protein (BMP) signaling pathway is essential for controlling the patterning and morphogenesis of the eggshell. During oogenesis, the roles of patterning and morphogenesis by the BMP type I receptor thickveins (tkv) have been studied extensively. However, signaling through this pathway requires both type I and II receptors, and the latter has yet to be established in oogenesis. We focus on wishful thinking (wit), the Drosophila homolog to the mammalian BMP type II receptor, BMPRII. We found that wit is expressed dynamically in the FCs of D. melanogaster in an evolutionary conserved pattern. The expression patterns are highly correlated with the dynamics of the BMP signaling, which is consistent with our finding that wit is a target of BMP signaling. Furthermore, we established that WIT is necessary for BMP signaling, and loss of WIT is associated with cell autonomous loss of BMP responses. Of importance, we demonstrated that perturbations in WIT led to changes in eggshell morphologies in domains that are patterned by BMP signaling. Previous studies have shown a role for WIT in BMP signaling during neurogenesis; however, our results reveal a role for WIT in epithelial cells' development.
Collapse
Affiliation(s)
- Robert A Marmion
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ, USA
| | | | | | | | | |
Collapse
|
11
|
Niepielko MG, Ip K, Kanodia JS, Lun DS, Yakoby N. Evolution of BMP signaling in Drosophila oogenesis: a receptor-based mechanism. Biophys J 2012; 102:1722-30. [PMID: 22768927 DOI: 10.1016/j.bpj.2012.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 01/22/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.
Collapse
|
12
|
Ramel MC, Hill CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586:1929-41. [PMID: 22710177 DOI: 10.1016/j.febslet.2012.02.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/14/2022]
Abstract
The bone morphogenetic protein (BMP) signalling pathway is critical for embryonic development and tissue homeostasis, and impaired BMP signalling has been implicated in multiple diseases. Molecular tools have been developed to visualise BMP activity in vivo and these have allowed a better understanding of the intricate ways in which BMP activity is regulated spatially. In particular, generation and interpretation of BMP activity gradients during development result from the complex interplay between core BMP signalling components and specific regulators. In this essay we discuss the mechanisms by which spatial regulation of BMP activity is achieved and its functional consequences.
Collapse
Affiliation(s)
- Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
13
|
BMP signaling in wing development: A critical perspective on quantitative image analysis. FEBS Lett 2012; 586:1942-52. [PMID: 22710168 DOI: 10.1016/j.febslet.2012.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/21/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are critical for pattern formation in many animals. In numerous tissues, BMPs become distributed in spatially non-uniform profiles. The gradients of signaling activity can be detected by a number of biological assays involving fluorescence microscopy. Quantitative analyses of BMP gradients are powerful tools to investigate the regulation of BMP signaling pathways during development. These approaches rely heavily on images as spatial representations of BMP activity levels, using them to infer signaling distributions that inform on regulatory mechanisms. In this perspective, we discuss current imaging assays and normalization methods used to quantify BMP activity profiles with a focus on the Drosophila wing primordium. We find that normalization tends to lower the number of samples required to establish statistical significance between profiles in controls and experiments, but the increased resolvability comes with a cost. Each normalization strategy makes implicit assumptions about the biology that impacts our interpretation of the data. We examine the tradeoffs for normalizing versus not normalizing, and discuss their impacts on experimental design and the interpretation of resultant data.
Collapse
|
14
|
Raftery LA, Umulis DM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol 2011; 24:158-65. [PMID: 22152945 DOI: 10.1016/j.ceb.2011.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic protein (BMP) signaling controls development and maintenance of many tissues. Genetic and quantitative approaches in Drosophila reveal that ligand isoforms show distinct function in wing development. Spatiotemporal control of BMP patterning depends on a network of extracellular proteins Pent, Ltl and Dally that regulate BMP signaling strength and morphogen range. BMP-mediated feedback regulation of Pent, Ltl, and Dally expression provides a system where cells actively respond to, and modify, the extracellular morphogen landscape to form a gradient that exhibits remarkable properties, including proportional scaling of BMP patterning with tissue size and the modulation of uniform tissue growth. This system provides valuable insights into mechanisms that mitigate the influence of variability to regulate cell-cell interactions and maintain organ function.
Collapse
Affiliation(s)
- Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA.
| | | |
Collapse
|