1
|
Wang H, Bollepogu Raja KK, Yeung K, Morrison CA, Terrizzano A, Khodadadi-Jamayran A, Chen P, Jordan A, Fritsch C, Sprecher SG, Mardon G, Treisman JE. Synergistic activation by Glass and Pointed promotes neuronal identity in the Drosophila eye disc. Nat Commun 2024; 15:7091. [PMID: 39154080 PMCID: PMC11330500 DOI: 10.1038/s41467-024-51429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
The integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1-R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass. We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes. Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells.
Collapse
Affiliation(s)
- Hongsu Wang
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Carolyn A Morrison
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- 10x Genomics, Pleasanton, CA, 94588, USA
| | - Antonia Terrizzano
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, 75005, France
| | | | - Phoenix Chen
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Ashley Jordan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Cornelia Fritsch
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica E Treisman
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Zhou Q, Yu L, Friedrich M, Pignoni F. Distinct regulation of atonal in a visual organ of Drosophila: Organ-specific enhancer and lack of autoregulation in the larval eye. Dev Biol 2016; 421:67-76. [PMID: 27693434 DOI: 10.1016/j.ydbio.2016.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 09/28/2016] [Indexed: 01/23/2023]
Abstract
Drosophila has three types of visual organs, the larval eyes or Bolwig's organs (BO), the ocelli (OC) and the compound eyes (CE). In all, the bHLH protein Atonal (Ato) functions as the proneural factor for photoreceptors and effects the transition from progenitor cells to differentiating neurons. In this work, we investigate the regulation of ato expression in the BO primordium (BOP). Surprisingly, we find that ato transcription in the BOP is entirely independent of the shared regulatory DNA for the developing CE and OC. The core enhancer for BOP expression, atoBO, lies ~6kb upstream of the ato gene, in contrast to the downstream location of CE and OC regulatory elements. Moreover, maintenance of ato expression in the neuronal precursors through autoregulation-a common and ancient feature of ato expression that is well-documented in eyes, ocelli and chordotonal organs-does not occur in the BO. We also show that the atoBO enhancer contains two binding sites for the transcription factor Sine oculis (So), a core component of the progenitor specification network in all three visual organs. These binding sites function in vivo and are specifically bound by So in vitro. Taken together, our findings reveal that the control of ato transcription in the evolutionarily derived BO has diverged considerably from ato regulation in the more ancestral compound eyes and ocelli, to the extent of acquiring what appears to be a distinct and evolutionarily novel cis-regulatory module.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Linlin Yu
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, USA; Departments of Neuroscience & Physiology and Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Zhou Q, DeSantis DF, Friedrich M, Pignoni F. Shared and distinct mechanisms of atonal regulation in Drosophila ocelli and compound eyes. Dev Biol 2016; 418:10-16. [PMID: 27565023 DOI: 10.1016/j.ydbio.2016.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023]
Abstract
The fruit fly Drosophila melanogaster has two types of external visual organs, a pair of compound eyes and a group of three ocelli. At the time of neurogenesis, the proneural transcription factor Atonal mediates the transition from progenitor cells to differentiating photoreceptor neurons in both organs. In the developing compound eye, atonal (ato) expression is directly induced by transcriptional regulators that confer retinal identity, the Retinal Determination (RD) factors. Little is known, however, about control of ato transcription in the ocelli. Here we show that a 2kb genomic DNA fragment contains distinct and common regulatory elements necessary for ato induction in compound eyes and ocelli. The three binding sites that mediate direct regulation by the RD factors Sine oculis and Eyeless in the compound eye are also required in the ocelli. However, in the latter, these sites mediate control by Sine oculis and the other Pax6 factor of Drosophila, Twin of eyeless, which can bind the Pax6 sites in vitro. Moreover, the three sites are differentially utilized in the ocelli: all three are similarly essential for atonal induction in the posterior ocelli, but show considerable redundancy in the anterior ocellus. Strikingly, this difference parallels the distinct control of ato transcription in the posterior and anterior progenitors of the developing compound eyes. From a comparative perspective, our findings suggest that the ocelli of arthropods may have originated through spatial partitioning from the dorsal edge of an ancestral compound eye.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dana F DeSantis
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Zhang T, Zhou Q, Ogmundsdottir MH, Möller K, Siddaway R, Larue L, Hsing M, Kong SW, Goding CR, Palsson A, Steingrimsson E, Pignoni F. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci 2015; 128:2938-50. [PMID: 26092939 DOI: 10.1242/jcs.173807] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 01/29/2023] Open
Abstract
The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF family proteins in fly and mammals. Collectively, this evidence points to an ancient module comprising Mitf, v-ATPase and TORC1 that serves as a dynamic modulator of metabolism for cellular homeostasis.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Ophthalmology, Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse, 13210 NY, USA
| | - Qingxiang Zhou
- Department of Ophthalmology, Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse, 13210 NY, USA
| | - Margret Helga Ogmundsdottir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Katrin Möller
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, OX3 7DQ Oxford, UK
| | - Lionel Larue
- Institut Curie, INSERM U1021, CNRS UMR3347, Normal and Pathological Development of Melanocytes, 91405 Orsay, France
| | - Michael Hsing
- Informatics Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Sek Won Kong
- Informatics Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Colin Ronald Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, OX3 7DQ Oxford, UK
| | - Arnar Palsson
- Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Francesca Pignoni
- Department of Ophthalmology, Center for Vision Research and SUNY Eye Institute, Upstate Medical University, Syracuse, 13210 NY, USA Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, 13210 NY, USA
| |
Collapse
|