1
|
Loh AHP, Thura M, Gupta A, Tan SH, Kuan KKY, Ang KH, Merchant K, Chang KTE, Yon HY, Chen Y, Cheng MHW, Mahadev A, Ng MCH, Seng MSF, Iyer P, Chia PL, Soh SY, Zeng Q. Exploiting frequent and specific expression of PRL3 in pediatric solid tumors for first-in-child use of PRL3-zumab humanized antibody. Mol Ther Oncolytics 2023; 30:153-166. [PMID: 37674627 PMCID: PMC10477756 DOI: 10.1016/j.omto.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Phosphatase of regenerating liver 3 (PRL3) is a specific tumor antigen overexpressed in a broad range of adult cancer types. However, its physiological expression in pediatric embryonal and mesenchymal tumors and its association with clinical outcomes in children is unknown. We sought to profile the expression of PRL3 in pediatric tumors in relation to survival outcomes, expression of angiogenesis markers, and G-protein-coupled receptor (GPCR)-mitogen-activated protein kinase (MAPK) signaling targets. PRL3-zumab, a first-in-class humanized antibody, was administered in a dose escalation schedule in a first-in-child clinical trial to study toxicity, pharmacokinetics, and clinical outcomes. Among 64 pediatric tumors, PRL3 was most frequently expressed in neuroblastoma (100%), rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas (71%), and renal sarcomas (60%) but absent in paired normal tissues. PRL3 was expressed in 75% of relapsed tumors and associated with shorter median event-free survival. Microarray profiling of PRL3-positive tumors showed elevation of angiogenin, TIMP1 and TIMP2, and GPCR-MAPK signaling proteins that commonly interacted with PRL3. The first use of PRL3-zumab in a pediatric patient saw no adverse events. A 28.6% reduction in maximum target lesion diameter was achieved when PRL3-zumab was administered concurrently with hypofractionated radiation. These findings support wider exploration of PRL3 expression in embryonal and mesenchymal tumors and further clinical application of PRL3-zumab in pediatric patients.
Collapse
Affiliation(s)
- Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Min Thura
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
| | - Kelvin Kam Yew Kuan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Khurshid Merchant
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Kenneth Tou En Chang
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Hui Yi Yon
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Yong Chen
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Mathew Hern Wang Cheng
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Arjandas Mahadev
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Matthew Chau Hsien Ng
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of GI Oncology, National Cancer Centre Singapore, Singapore 229899, Singapore
| | - Michaela Su-Fern Seng
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Prasad Iyer
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Pei Ling Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
2
|
Chen SF, Hsien HL, Wang TF, Lin MD. Drosophila Phosphatase of Regenerating Liver Is Critical for Photoreceptor Cell Polarity and Survival during Retinal Development. Int J Mol Sci 2023; 24:11501. [PMID: 37511262 PMCID: PMC10380645 DOI: 10.3390/ijms241411501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Hsin-Lun Hsien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ting-Fang Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
3
|
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e322. [PMID: 29722151 PMCID: PMC6215528 DOI: 10.1002/wdev.322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/01/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer," these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Crystal D. Rogers
- Department of Biology, College of Science and Mathematics, California State University Northridge, Northridge, California
| | - Shuyi Nie
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|