1
|
Khampang S, Lorthongpanich C, Laowtammathron C, Klaihmon P, Meesa S, Suksomboon W, Jiamvoraphong N, Kheolamai P, Luanpitpong S, Easley CA, Mahyari E, Issaragrisil S. The dynamic expression of YAP is essential for the development of male germ cells derived from human embryonic stem cells. Sci Rep 2024; 14:15732. [PMID: 38977826 PMCID: PMC11231333 DOI: 10.1038/s41598-024-66852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.
Collapse
Affiliation(s)
- Sujittra Khampang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sukanya Meesa
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wichuda Suksomboon
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathum Thani, 12121, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, 10310, Thailand
| |
Collapse
|
2
|
Kim CL, Lim SB, Choi SH, Kim DH, Sim YE, Jo EH, Kim K, Lee K, Park HS, Lim SB, Kang LJ, Jeong HS, Lee Y, Hansen CG, Mo JS. The LKB1-TSSK1B axis controls YAP phosphorylation to regulate the Hippo-YAP pathway. Cell Death Dis 2024; 15:76. [PMID: 38245531 PMCID: PMC10799855 DOI: 10.1038/s41419-024-06465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun-Hye Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Keeeun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Youngsoo Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Carsten G Hansen
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
3
|
Jin C, Wang Z, Li P, Tang J, Jiao T, Li Y, Ou J, Zou D, Li M, Mang X, Liu J, Ma Y, Wu X, Shi J, Chen S, He M, Lu Y, Zhang N, Miao S, Sun F, Wang L, Li K, Yu J, Song W. Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans. SCIENCE ADVANCES 2023; 9:eabq3173. [PMID: 37540753 PMCID: PMC10403211 DOI: 10.1126/sciadv.abq3173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Manman He
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ning Zhang
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
4
|
Höffken V, Di Persio S, Laurentino S, Wyrwoll MJ, Terwort N, Hermann A, Röpke A, Oud MS, Wistuba J, Kliesch S, Pavenstädt HJ, Tüttelmann F, Neuhaus N, Kremerskothen J. WWC2 expression in the testis: Implications for spermatogenesis and male fertility. FASEB J 2023; 37:e22912. [PMID: 37086090 DOI: 10.1096/fj.202200960r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
The family of WWC proteins is known to regulate cell proliferation and organ growth control via the Hippo signaling pathway. As WWC proteins share a similar domain structure and a common set of interacting proteins, they are supposed to fulfill compensatory functions in cells and tissues. While all three WWC family members WWC1, WWC2, and WWC3 are found co-expressed in most human organs including lung, brain, kidney, and liver, in the testis only WWC2 displays a relatively high expression. In this study, we investigated the testicular WWC2 expression in spermatogenesis and male fertility. We show that the Wwc2 mRNA expression level in mouse testes is increased during development in parallel with germ cell proliferation and differentiation. The cellular expression of each individual WWC family member was evaluated in published single-cell mRNA datasets of murine and human testes demonstrating a high WWC2 expression predominantly in early spermatocytes. In line with this, immunohistochemistry revealed cytosolic WWC2 protein expression in primary spermatocytes from human testes displaying full spermatogenesis. In accordance with these findings, markedly lower WWC2 expression levels were detected in testicular tissues from mice and men lacking germ cells. Finally, analysis of whole-exome sequencing data of male patients affected by infertility and unexplained severe spermatogenic failure revealed several heterozygous, rare WWC2 gene variants with a proposed damaging function and putative impact on WWC2 protein structure. Taken together, our findings provide novel insights into the testicular expression of WWC2 and show its cell-specific expression in spermatocytes. As rare WWC2 variants were identified in the background of disturbed spermatogenesis, WWC2 may be a novel candidate gene for male infertility.
Collapse
Affiliation(s)
- Verena Höffken
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Anke Hermann
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Manon S Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Hermann J Pavenstädt
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Joachim Kremerskothen
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
Lalonde-Larue A, Boyer A, Dos Santos EC, Boerboom D, Bernard DJ, Zamberlam G. The Hippo Pathway Effectors YAP and TAZ Regulate LH Release by Pituitary Gonadotrope Cells in Mice. Endocrinology 2022; 163:bqab238. [PMID: 34905605 PMCID: PMC8670590 DOI: 10.1210/endocr/bqab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/08/2023]
Abstract
The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion. Using a conditional gene targeting approach (cKO), we found that gonadotrope-specific inactivation of Yap and Taz resulted in increased circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in adult male mice, along with increased testosterone levels and testis weight. Female cKO mice had increased circulating LH (but not FSH) levels, which were associated with a hyperfertility phenotype characterized by higher ovulation rates and larger litter sizes. Unexpectedly, the loss of YAP/TAZ did not appear to affect the expression of gonadotropin subunit genes, yet both basal and GnRH-induced LH secretion were increased in cultured pituitary cells from cKO mice. Likewise, pharmacologic inhibition of YAP binding to the TEAD family of transcription factors increased both basal and GnRH-induced LH secretion in LβT2 gonadotrope-like cells in vitro without affecting Lhb expression. Conversely, mRNA levels of ChgA and SgII, which encode key secretory granule cargo proteins, were decreased following pharmacologic inhibition of YAP/TAZ, suggesting a mechanism whereby YAP/TAZ regulate the LH secretion machinery in gonadotrope cells. Together, these findings represent the first evidence that Hippo signaling may play a role in regulating pituitary LH secretion.
Collapse
Affiliation(s)
- Ariane Lalonde-Larue
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Esdras Corrêa Dos Santos
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gustavo Zamberlam
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| |
Collapse
|
6
|
Tan K, Song HW, Wilkinson MF. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development 2020; 147:dev.183251. [PMID: 31964773 DOI: 10.1242/dev.183251] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Pro-spermatogonia (SG) serve as the gateway to spermatogenesis. Using single-cell RNA sequencing (RNAseq), we studied the development of ProSG, their SG descendants and testicular somatic cells during the perinatal period in mice. We identified both gene and protein markers for three temporally distinct ProSG cell subsets, including a migratory cell population with a transcriptome distinct from the previously defined T1- and T2-ProSG stages. This intermediate (I)-ProSG subset translocates from the center of seminiferous tubules to the spermatogonial stem cell (SSC) 'niche' in its periphery soon after birth. We identified three undifferentiated SG subsets at postnatal day 7, each of which expresses distinct genes, including transcription factor and signaling genes. Two of these subsets have the characteristics of newly emergent SSCs. We also molecularly defined the development of Sertoli, Leydig and peritubular myoid cells during the perinatal period, allowing us to identify candidate signaling pathways acting between somatic and germ cells in a stage-specific manner during the perinatal period. Our study provides a rich resource for those investigating testicular germ and somatic cell developmental during the perinatal period.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA .,Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|