1
|
Zhang Z, Gong J, Wang B, Li X, Ding Y, Yang B, Zhu C, Liu M, Zhang W. Regrowth strategies of Leymus chinensis in response to different grazing intensities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02113. [PMID: 32112460 DOI: 10.1002/eap.2113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In temperate grassland ecosystems, grazing can affect plant growth by foraging, trampling, and excretion. The ability of dominant plant species to regrow after grazing is critical, since it allows the regeneration of photosynthetic tissues to support growth. We conducted a field experiment to evaluate the effects of different grazing intensities (control, light, medium, and heavy) on the physiological and biochemical responses of Leymus chinensis and the carbon (C) sources utilized during regrowth. Light grazing promoted regrowth and photoassimilate storage of L. chinensis, by increasing the net photosynthetic rate (Pn ), photosynthetic quenching, light interception, sugar accumulation, sucrose synthase activities, and fructose supply from stems. At medium grazing intensity, L. chinensis had low Pn , light interception, and sugar accumulation, but higher expression of a sucrose transporter gene (LcSUT1) and water-use efficiency, which reflected a tendency to store C in belowground to promote survival. This strategy was associated with regulation by abscisic acid (ABA), jasmonate, and salicylic acid (SA) signaling. However, L. chinensis tolerated heavy grazing by increased ABA and jasmonate-induced promotion of C assimilation and osmotic adjustment, combined with photoprotection against photo-oxidation, suggesting a strategy based on regrowth. In addition, stems were the main C source organs and energy supply rather than roots. Simultaneously, SA represented a weaker defense than ABA and jasmonate. Therefore, L. chinensis adopted different strategies for regrowth under different grazing intensities, and light grazing promoted regrowth the most. Our results demonstrate the regulation of C reserves utilization by phytohormones, and this regulation provides an explanation for recent results about grazing responses.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yong Ding
- Grassland Research Institute of Chinese Academic of Agricultural Science, Hohhot, Inner Mongolia, 010021, China
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chenchen Zhu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Min Liu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Flint SA, Olofson D, Jordan NR, Shaw RG. Population source affects competitive response and effect in a C
4
grass (
Panicum virgatum
). Restor Ecol 2019. [DOI: 10.1111/rec.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shelby A. Flint
- University of Minnesota, Conservation Biology Graduate Program, 135B Skok Hall, 2003 Upper Buford Circle St. Paul MN 55108 U.S.A
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| | - Dana Olofson
- University of Minnesota, University Honors Program, 390 Northrop, 84 Church Street SE Minneapolis MN 55455 U.S.A
- Mayo Clinic, Translational Research, Innovation, and Test Development Office, 200 First Street Southwest Rochester MN 55905 U.S.A
| | - Nicholas R. Jordan
- Department of Agronomy and Plant GeneticsUniversity of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|