1
|
Hopf JK, Quennessen V, Ridgway J, Barceló C, Caltabellotta FP, Farnsworth Hayroyan S, Garcia D, McLeod M, Lester SE, Nickols K, Yeager M, White JW. Ecological success of no-take marine protected areas: Using population dynamics theory to inform a global meta-analysis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3027. [PMID: 39256998 DOI: 10.1002/eap.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 09/12/2024]
Abstract
Adaptively managing marine protected areas (MPAs) requires accurately assessing whether established MPAs are achieving their goals of protecting and conserving biomass, especially for harvested populations. Ecological MPA assessments commonly compare inside of the MPA to a reference point outside of and/or before implementation (i.e., calculating "response ratios"). Yet, MPAs are not simple ecological experiments; by design, protected populations interact with those outside, and population dynamic responses can be nonlinear. This complicates assessment interpretations. Here, we used a two-patch population model to explore how MPA response ratios (outside-inside, before-after, and before-after-control-impact [BACI]) for fished populations behave under different conditions, like whether the population is receiving a sustainable larval supply or if it is declining despite protection from harvest. We then conducted a Bayesian evaluation of MPA effects on fish and invertebrate populations based on data collected from 82 published studies on 264 no-take MPAs worldwide, using the results of an earlier global meta-analysis as priors. We considered the effects of calculating different summary metrics on these results, drawing on the theoretical insights from our population model as a comparative framework. We demonstrate that not all response ratio comparison types provide the same information: For example, outside-inside and BACI comparisons can fail to detect population decline within MPAs, whereas before-after comparisons likely detect that pattern. Considering these limitations, we nonetheless found that MPAs globally are producing positive outcomes, with on average greater biomass, density, and organism size within their boundaries than reference sites. However, only a small portion of studies (18 of 82) provided the temporal data necessary to determine that protection, on average, has led to increased abundance of populations within MPAs over time. These findings demonstrate the importance of considering the underlying system dynamics when assessing MPA effects. Assuming that large outside-inside or BACI response ratios always reflect large and net positive conservation effects may lead to misleading conclusions, we recommend that: (1) when assessing specific MPA effects, empirical findings be considered alongside theoretical knowledge relevant to that MPA system, and (2) management should respond to the local conditions and outcomes, rather than a blanket expectation for positive MPA effects.
Collapse
Affiliation(s)
- Jess K Hopf
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Victoria Quennessen
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | - Jacob Ridgway
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Caren Barceló
- Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
| | | | | | - Derek Garcia
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Montana McLeod
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | - Sarah E Lester
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Kerry Nickols
- College of Science, California State University Monterey Bay, Marina, California, USA
| | - Mallarie Yeager
- Habitat Conservation Division, Alaska Region, National Marine Fisheries Service, NOAA, Juneau, Alaska, USA
| | - J Wilson White
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| |
Collapse
|
2
|
Liang M, Lamy T, Reuman DC, Wang S, Bell TW, Cavanaugh KC, Castorani MCN. A marine heatwave changes the stabilizing effects of biodiversity in kelp forests. Ecology 2024; 105:e4288. [PMID: 38522859 DOI: 10.1002/ecy.4288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity-stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities.
Collapse
Affiliation(s)
- Maowei Liang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, Minnesota, USA
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Weisser W, Blüthgen N, Staab M, Achury R, Müller J. Experiments are needed to quantify the main causes of insect decline. Biol Lett 2023; 19:20220500. [PMID: 36789531 PMCID: PMC9929502 DOI: 10.1098/rsbl.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Sparked by reports of insect declines of unexpected extent, there has been a surge in the compilation and analysis of insect time series data. While this effort has led to valuable databases, disagreement remains as to whether, where and why insects are declining. The 'why' question is particularly important because successful insect conservation will need to address the most important drivers of decline. Despite repeated calls for more long-term data, new time series will have to run for decades to quantitatively surpass those currently available. Here we argue that experimentation in addition to quantitative analysis of existing data is needed to identify the most important drivers of insect decline. While most potential drivers of insect population change are likely to have already been identified, their relative importance is largely unknown. Researchers should thus unite and use statistical insight to set up suitable experiments to be able to rank drivers by their importance. Such a coordinated effort is needed to produce the knowledge necessary for conservation action and will also result in increased monitoring and new time series.
Collapse
Affiliation(s)
- Wolfgang Weisser
- School of Life Sciences, Technical University of Munich, Terrestrial Ecology Research Group, Freising, Germany
| | - Nico Blüthgen
- Ecological Networks, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Staab
- Ecological Networks, Technische Universität Darmstadt, Darmstadt, Germany
| | - Rafael Achury
- School of Life Sciences, Technical University of Munich, Terrestrial Ecology Research Group, Freising, Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
4
|
Hopf JK, Caselle JE, White JW. Recruitment variability and sampling design interact to influence the detectability of protected area effects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2511. [PMID: 34870882 DOI: 10.1002/eap.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Correctly identifying the effects of a human impact on a system is a persistent challenge in ecology, driven partly by the variable nature of natural systems. This is particularly true in many marine fishery species, which frequently experience large temporal fluctuations in recruitment that produce interannual variations in populations. This variability complicates efforts to maintain stocks at management targets or detect the effects of rebuilding efforts. We address this challenge in the context of no-take marine reserves by exploring how variable larval recruitment could interact with the timing of reserve establishment and choice of sampling design to affect population dynamics and the detectability of reserve effects. To predict population changes in the years following a no-take reserve implementation, we first tested for periodicity in larval recruitment in an important U.S. Pacific coast recreational fishery species (kelp bass, Paralabrax clathratus) and then included that pattern in a population model. We also used this model to determine the detectability of population increases under alternative sampling approaches and minimum age sampled. Kelp bass larval recruitment in the Channel Islands, California, peaked every about six (major) and about two (minor) years. Our model showed that establishing a reserve during a peak or trough enhanced or delayed, respectively, the post-reserve population increases. However, establishing a reserve during a recruitment peak could obscure a failing reserve, that is, a reserve that is unable to secure longer-term metapopulation persistence. Recruitment peaks and troughs also interacted with sampling design to affect the detectability of reserve effects. Designs that compared inside-outside were the most robust to variable recruitment, but failed to capture whether the reserve has improved metapopulation growth. Designs that included a time element (e.g., before-after) are more suited to assessing reserve effectiveness, but were sensitive to recruitment variation and detectability can change year-to-year. Notably, detectability did not always increase monotonically with reserve age; the optimal time for detectability depended on the minimum age of organisms sampled and was greatest when the cohort of a major recruitment peak first appeared in the sampling. We encourage managers to account for variable recruitment when planning monitoring and assessment programs.
Collapse
Affiliation(s)
- Jess K Hopf
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - J Wilson White
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| |
Collapse
|