1
|
Tscharntke T, Batáry P, Grass I. Mixing on- and off-field measures for biodiversity conservation. Trends Ecol Evol 2024; 39:726-733. [PMID: 38705769 DOI: 10.1016/j.tree.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
The continuing biodiversity losses through agricultural expansion and intensification are dramatic. We argue that a mix of on- and off-field measures is needed, overcoming the false dichotomy of the land sharing-sparing debate. Protected land is essential for global biodiversity, while spillover between farmed and natural land is key to reducing species extinctions. This is particularly effective in landscapes with small and diversified fields. Focusing only on protected land fails to conserve a wealth of species, which often provide major ecosystem services such as pest control, pollination, and cultural benefits. On-field measures must minimise yield losses to prevent increased demand for food imports from biodiversity-rich regions, requiring enforcement of high social-ecological land-use standards to ensure a good life for all.
Collapse
Affiliation(s)
| | - Péter Batáry
- "Lendület" Landscape and Conservation Ecology, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary; Faunistics and Wildlife Conservation, Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
English SG, Bishop CA, Bieber M, Elliott JE. Following Regulation, Imidacloprid Persists and Flupyradifurone Increases in Nontarget Wildlife. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1497-1508. [PMID: 38819074 DOI: 10.1002/etc.5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024]
Abstract
After regulation of pesticides, determination of their persistence in the environment is an important indicator of effectiveness of these measures. We quantified concentrations of two types of systemic insecticides, neonicotinoids (imidacloprid, acetamiprid, clothianidin, thiacloprid, and thiamethoxam) and butenolides (flupyradifurone), in off-crop nontarget media of hummingbird cloacal fluid, honey bee (Apis mellifera) nectar and honey, and wildflowers before and after regulation of imidacloprid on highbush blueberries in Canada in April 2021. We found that mean total pesticide load increased in hummingbird cloacal fluid, nectar, and flower samples following imidacloprid regulation. On average, we did not find evidence of a decrease in imidacloprid concentrations after regulation. However, there were some decreases, some increases, and other cases with no changes in imidacloprid levels depending on the specific media, time point of sampling, and site type. At the same time, we found an overall increase in flupyradifurone, acetamiprid, thiamethoxam, and thiacloprid but no change in clothianidin concentrations. In particular, flupyradifurone concentrations observed in biota sampled near agricultural areas increased twofold in honey bee nectar, sevenfold in hummingbird cloacal fluid, and eightfold in flowers after the 2021 imidacloprid regulation. The highest residue detected was flupyradifurone at 665 ng/mL (parts per billion [ppb]) in honey bee nectar. Mean total pesticide loads were highest in honey samples (84 ± 10 ppb), followed by nectar (56 ± 7 ppb), then hummingbird cloacal fluid (1.8 ± 0.5 ppb), and least, flowers (0.51 ± 0.06 ppb). Our results highlight that limited regulation of imidacloprid does not immediately reduce residue concentrations, while other systemic insecticides, possibly replacement compounds, concurrently increase in wildlife. Environ Toxicol Chem 2024;43:1497-1508. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Simon G English
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine A Bishop
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada
| | - Matthias Bieber
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada
| | - John E Elliott
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Delta, British Columbia, Canada
| |
Collapse
|
3
|
Walsh EM, Simone-Finstrom M. Current honey bee stressor investigations and mitigation methods in the United States and Canada. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:19. [PMID: 38805646 PMCID: PMC11132128 DOI: 10.1093/jisesa/ieae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Honey bees are the most important managed insect pollinators in the US and Canadian crop systems. However, the annual mortality of colonies in the past 15 years has been consistently higher than historical records. Because they are eusocial generalist pollinators and amenable to management, honey bees provide a unique opportunity to investigate a wide range of questions at molecular, organismal, and ecological scales. Here, the American Association of Professional Apiculturists (AAPA) and the Canadian Association of Professional Apiculturists (CAPA) created 2 collections of articles featuring investigations on micro and macro aspects of honey bee health, sociobiology, and management showcasing new applied research from diverse groups studying honey bees (Apis mellifera) in the United States and Canada. Research presented in this special issue includes examinations of abiotic and biotic stressors of honey bees, and evaluations and introductions of various stress mitigation measures that may be valuable to both scientists and the beekeeping community. These investigations from throughout the United States and Canada showcase the wide breadth of current work done and point out areas that need further research.
Collapse
Affiliation(s)
- Elizabeth M Walsh
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Unit, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Unit, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| |
Collapse
|
4
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
5
|
Courson E, Ricci B, Muneret L, Petit S. Reducing pest pressure and insecticide use by increasing hedgerows in the landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170182. [PMID: 38244626 DOI: 10.1016/j.scitotenv.2024.170182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Reducing pesticide use while maintaining agricultural production is a key challenge. Ecological theory predicts that landscape simplification is likely to increase insect pest outbreaks and limit their control by natural enemies, and this situation could boost insecticide use. Some studies have indeed detected that simpler landscapes were associated with higher insecticide use, but very few have demonstrated that this association is caused by landscape effects on pest abundance. Here, we analysed insecticide use and pest pressure in response to landscape simplification across 557 arable farms across France. Accounting for potentially confounding covariates, we found that lower cover of hedgerows in the landscape, but not semi natural areas, were associated with higher on-farm insecticide use. We also found that greater hedgerow coverage was associated with lower aphid pest pressure. Specifically, increasing the landscape-scale cover of hedgerows from 1 % to 3 % meant that insecticide use was halved. These findings suggest that restoring hedgerow cover at the landscape scale should be targeted in order to speed-up the ecological intensification of agriculture.
Collapse
Affiliation(s)
- Emeric Courson
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Benoit Ricci
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lucile Muneret
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sandrine Petit
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
6
|
von Jeetze PJ, Weindl I, Johnson JA, Borrelli P, Panagos P, Molina Bacca EJ, Karstens K, Humpenöder F, Dietrich JP, Minoli S, Müller C, Lotze-Campen H, Popp A. Projected landscape-scale repercussions of global action for climate and biodiversity protection. Nat Commun 2023; 14:2515. [PMID: 37193693 DOI: 10.1038/s41467-023-38043-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 05/18/2023] Open
Abstract
Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature's contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss. However, we also find that these actions could be combined with dedicated interventions that support critical NCP and biodiversity conservation outside of protected areas. In particular, our models indicate that conserving at least 20% semi-natural habitat within farmed landscapes could primarily be achieved by spatially relocating cropland outside conservation priority areas, without additional carbon losses from land-use change, primary land conversion or reductions in agricultural productivity.
Collapse
Affiliation(s)
- Patrick José von Jeetze
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany.
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany.
| | - Isabelle Weindl
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| | - Justin Andrew Johnson
- Department of Applied Economics, University of Minnesota, 1940 Buford Ave, Saint Paul, MN, 55105, USA
| | - Pasquale Borrelli
- Department of Environmental Sciences, Environmental Geosciences, University of Basel, Basel, Switzerland
- Department of Science, Roma Tre University, Rome, Italy
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra (VA), IT-21027, Italy
| | - Edna J Molina Bacca
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Kristine Karstens
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Florian Humpenöder
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| | - Jan Philipp Dietrich
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| | - Sara Minoli
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| | - Christoph Müller
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| | - Hermann Lotze-Campen
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Alexander Popp
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 601203, 14412, Potsdam, Germany
| |
Collapse
|
7
|
Mahony NA, Dale BC, Miller DAW. Grassland bird population declines at three Breeding Bird Survey spatial scales in contrast to a large native prairie. Ecosphere 2022. [DOI: 10.1002/ecs2.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nancy A. Mahony
- Wildlife Research Division Environment and Climate Change Canada Edmonton Alberta Canada
| | - Brenda C. Dale
- Canadian Wildlife Service Environment and Climate Change Canada Edmonton Alberta Canada
| | - David A. W. Miller
- Department of Ecosystem Science and Management Penn State College of Agricultural Sciences University Park Pennsylvania USA
| |
Collapse
|
8
|
López-Felices B, Aznar-Sánchez JA, Velasco-Muñoz JF, Mesa-Vázquez E. Installation of hedgerows around greenhouses to encourage biological pest control: Farmers' perspectives from Southeast Spain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116210. [PMID: 36108512 DOI: 10.1016/j.jenvman.2022.116210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The intensification of agriculture has led to the deterioration of various ecosystem services, including pest control. The installation of hedgerows around greenhouses is presented as a viable option to maintain and favour natural enemies of pests. Despite the economic and environmental advantages of this type of facility, farmers are reluctant to implement it. Therefore, it is necessary to determine the factors that influence the decision to install hedgerows and the most appropriate incentives to promote their establishment. This article analyses intensive agriculture in Southeastern Spain. The application of cluster analysis techniques allowed the detection of four types of farmers in relation to this practice. The factors that drive its installation are an increase in the effectiveness of biological control, a reduction in the use of pesticides and the possible economic and environmental benefits. As a barrier, a lack of knowledge of and confidence in the effectiveness of this practice stand out. Among the measures to encourage their installation, the most valued are training and advice and recurring payments for the ecosystem services generated. The results obtained can be useful for policy makers in regions in which the installation of non-crop vegetation is promoted.
Collapse
Affiliation(s)
- Belén López-Felices
- Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120, Almería, Spain.
| | - Jose A Aznar-Sánchez
- Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120, Almería, Spain.
| | - Juan F Velasco-Muñoz
- Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120, Almería, Spain.
| | - Ernesto Mesa-Vázquez
- Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
9
|
Řezáč M, Přibáňová G, Gloríková N, Heneberg P. Contact exposure to neonicotinoid insecticides temporarily suppresses the locomotor activity of Pardosa lugubris agrobiont wolf spiders. Sci Rep 2022; 12:14745. [PMID: 36042361 PMCID: PMC9427997 DOI: 10.1038/s41598-022-18842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to numerous chemicals disrupts the spiders' locomotion. Spiders, particularly epigeic spiders, are dependent on their locomotory activities to search for prey, hide from their enemies, and perform sexual reproduction and subsequent parental care. Among the best-known compounds that inhibit the locomotion of arthropods are neonicotinoids. Despite spiders are less affected by the neonicotinoids than insects due to the sequence differences in their acetylcholine receptors, they are not resistant to these compounds. We hypothesized that acute exposure to a broad spectrum of neonicotinoids suppresses the traveled distance, mean velocity, and maximum velocity in epigeic spiders. As a model species, we used adults of Pardosa lugubris. We tested commercial formulations of thiamethoxam, acetamiprid, and thiacloprid. We tested each of the neonicotinoids in the maximum and minimum concentrations recommended for foliar applications. We applied them under controlled conditions dorsally by spraying them directly on the spiders or exposing the spiders to the tarsal contact with neonicotinoid residues. Control groups consisted of 31 individuals; treated groups consisted of 10–21 individuals. We found that a broad spectrum of neonicotinoids temporarily suppresses the traveled distance in epigeic spiders. At 1 h after application, all the three tested neonicotinoid insecticides induced declines in the traveled distance, but this effect mostly disappeared when tested at 24 h after the application. The decrease in the traveled distance was associated with substantial temporary decreases in the mean and maximum velocities. Despite differences among modalities, all three insecticides caused multiple adverse effects on the locomotory parameters in any tested concentrations. It remains to test what would be the lowest safe concentration for the chronic exposure to neonicotinoids in epigeic spiders.
Collapse
Affiliation(s)
- Milan Řezáč
- Crop Research Institute, Prague, Czech Republic
| | | | | | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|