1
|
Burger J, Gochfeld M, Brown KG, Cortes M, Ng K, Kosson D. Using the National Land Cover Database as an indicator of shrub-steppe habitat: comparing two large United States federal lands with surrounding regions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-19. [PMID: 39396151 DOI: 10.1080/15287394.2024.2412659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
There is a need to assess whether ecological resources are being protected on large, federal lands. The aim of this study was to present a methodology which consistently and transparently determines whether two large Department of Energy (U.S. DOE) facilities have protected valuable ecological lands on their sites compared to the surrounding region. The National Land Cover Database (2019) was used to examine the % shrub-scrub (shrub-steppe) and other habitats on the DOE's Hanford Site (HS, Washington) and on the Idaho National Laboratory (INL), compared to a 10-km and 30-km diameter band of land surrounding each site. On both sites, over 95% is in shrub-scrub or grassland, compared to the surrounding region. Approximately 70% of 10 km and 30-km bands around INL, and less than 50% of land surrounding HS is located in these two habitat types. INL has preserved a significantly higher % shrub/scrub habitat than HS, but INL allows grazing on 60% of its land. HS has preserved a significantly higher % grassland than INL but no grazing on site is present. The methodology presented may be used to compare key ecological habitat types such as grasslands, forest, and desert among sites in different parts of the country. This methodology enables managers, resource trustees, and the public to (1) make remediation decisions that protect resources, (2) assess whether landowners and managers have adequately characterized and protected environmental resources on their sites, and (3) whether landowners and managers have protected the integrity of that land as well as its climax vegetation.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
- Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN and Rutgers University, Piscataway NJ, USA
| | - Michael Gochfeld
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
- Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN and Rutgers University, Piscataway NJ, USA
- Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Kevin G Brown
- Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN and Rutgers University, Piscataway NJ, USA
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, USA
| | - Monica Cortes
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kelly Ng
- Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN and Rutgers University, Piscataway NJ, USA
| | - David Kosson
- Consortium for Risk Evaluation with Stakeholder Participation, Vanderbilt University, Nashville, TN and Rutgers University, Piscataway NJ, USA
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Austin MW, Smith AB, Olsen KM, Hoch PC, Krakos KN, Schmocker SP, Miller-Struttmann NE. Climate change increases flowering duration, driving phenological reassembly and elevated co-flowering richness. THE NEW PHYTOLOGIST 2024; 243:2486-2500. [PMID: 39049577 DOI: 10.1111/nph.19994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.
Collapse
Affiliation(s)
- Matthew W Austin
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Adam B Smith
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Peter C Hoch
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kyra N Krakos
- Department of Biology, Maryville University in Saint Louis, St Louis, MO, 63141, USA
- Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Stefani P Schmocker
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Nicole E Miller-Struttmann
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Natural Sciences and Mathematics, Webster University, St Louis, MO, 63119, USA
| |
Collapse
|
3
|
Geissler C, Davidson A, Niesenbaum RA. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. PeerJ 2023; 11:e15188. [PMID: 37101791 PMCID: PMC10124540 DOI: 10.7717/peerj.15188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Abstract
Climate warming has the potential to influence plant flowering phenology which in turn can have broader ecological consequences. Herbarium collections offer a source of historical plant data that makes possible the ability to document and better understand how warming climate can influence long-term shifts in flowering phenology. We examined the influence of annual, winter, and spring temperatures on the flowering phenology of herbarium specimens for 36 species collected from 1884-2015. We then compared the response to warming between native and non-native, woody and herbaceous, dry and fleshy fruit, and spring vs summer blooming species. Across all species, plants flowered 2.26 days earlier per 1 °C increase in annual average temperatures and 2.93 days earlier per 1 °C increase in spring onset average temperatures. Winter temperatures did not significantly influence flowering phenology. The relationship of temperature and flowering phenology was not significantly different between native and non-native species. Woody species flowered earlier than herbaceous species only in response to increasing annual temperatures. There was no difference in the phenological response between species with dry fruits and those fleshy fruits for any of the temperature periods. Spring blooming species exhibited a significantly greater phenological response to warming yearly average temperatures than summer blooming species. Although herbarium specimens can reveal climate change impacts on phenology, it is also evident that the phenological responses to warming vary greatly among species due to differences in functional traits such as those considered here, as well as other factors.
Collapse
Affiliation(s)
- Cole Geissler
- Department of Biology, Muhlenberg College, Allentown, PA, United States of America
| | - Allison Davidson
- Department of Mathematics, Muhlenberg College, Allentown, PA, United States of America
| | | |
Collapse
|
4
|
Bloom TDS, O'Leary DS, Riginos C. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2583. [PMID: 35333428 DOI: 10.1002/eap.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Climate change is widely known to affect plant phenology, but little is known about how these impacts manifest in the widespread sagebrush ecosystem of the Western United States, which supports a number of wildlife species of concern. Shifts in plant phenology can trigger consequences for the plants themselves as well as the communities of consumers that depend upon them. We assembled historical observations of first-flowering dates for 51 species collected in the 1970s and 1980s in a montane sagebrush community in the Greater Yellowstone Ecosystem and compared these to contemporary phenological observations targeting the same species and locations (2016-2019). We also assembled regional climate data (average spring temperature, day of spring snowmelt, and growing degree days) and tested the relationship between first-flowering time and these variables for each species. We observed the largest change in phenology in early-spring flowers, which, as a group, bloomed on average 17 days earlier, and as much as 36 days earlier, in the contemporary data set. Mid-summer flowers bloomed on average 10 days earlier, nonnative species 15 days earlier, and berry-producing shrubs 5 days earlier, while late summer flowering plants did not shift. The greatest correlates of early-spring and mid-summer flowering were average spring temperature and day of snowmelt, which was 21 days earlier, on average, in 2016-2019 relative to the 1973-1978 observations. The shifts in flowering phenology that we observed could indicate developing asynchronies or novel synchronies of these plant resources and wildlife species of conservation concern, including Greater Sage-grouse, whose nesting success is tied to availability of spring forbs; grizzly bears, which rely heavily on berries for their fall diet; and pollinators. This underscores the importance of maintaining a diverse portfolio of native plants in terms of species composition, genetics, phenological responsiveness to climatic cues, and ecological importance to key wildlife and pollinator species. Redundancy within ecological niches may also be important considering that species roles in the community may shift as climate change affects them differently. These considerations are particularly relevant to restoration and habitat-enhancement projects in sagebrush communities across western North America.
Collapse
Affiliation(s)
- Trevor D S Bloom
- The Nature Conservancy, Lander, Wyoming, USA
- Northern Rockies Conservation Cooperative, Jackson, Wyoming, USA
| | - Donal S O'Leary
- Northern Rockies Conservation Cooperative, Jackson, Wyoming, USA
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | - Corinna Riginos
- The Nature Conservancy, Lander, Wyoming, USA
- Northern Rockies Conservation Cooperative, Jackson, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|