1
|
Hao L, Liu X, Ji R, Ma Y, Wu P, Cao Q, Xin Y. Indirect regulation of topsoil nutrient cycling by groundwater depth: impacts on sand-fixing vegetation and rhizosphere bacterial communities. Front Microbiol 2023; 14:1285922. [PMID: 38143862 PMCID: PMC10746847 DOI: 10.3389/fmicb.2023.1285922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The impact of groundwater table depth (GTD) on bacterial communities and soil nutrition in revegetated areas remains unclear. Methods We investigated the impacts of plant growth and soil physicochemical factors on rhizosphere bacterial communities under different GTD. Results The four plant growth indices (Pielou, Margalef, Simpson, and Shannon-Wiener indices) and soil water content (SWC) at the Artem and Salix sites all showed a decreasing trend with increasing GTD. Salix had a higher nutrient content than Artem. The response of plant rhizosphere bacterial communities to GTD changes were as follows. Rhizosphere bacteria at the Artem and Salix sites exhibited higher relative abundance and alpha diversity in SW (GTD < 5 m) compared than in DW (GTD > 5 m). Functional microbial predictions indicated that the rhizosphere bacterial communities of Artem and Salix promoted carbon metabolism in the SW. In contrast, Artem facilitated nitrogen cycling, whereas Salix enhanced both nitrogen cycling and phototrophic metabolism in the DW. Discussion Mantel test analysis revealed that in the SW of Artem sites, SWC primarily governed the diversity of rhizosphere and functional bacteria involved in the nitrogen cycle by affecting plant growth. In DW, functional bacteria increase soil organic carbon (SOC) to meet nutrient demands. However, higher carbon and nitrogen availability in the rhizosphere soil was observed in the SW of the Salix sites, whereas in DW, carbon nutrient availability correlated with keystone bacteria, and changes in nitrogen content could be attributed to nitrogen mineralization. This indicates that fluctuations in the groundwater table play a role in regulating microbes and the distribution of soil carbon and nitrogen nutrients in arid environments.
Collapse
Affiliation(s)
- Lianyi Hao
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Region of Ministry of Water Resources, Chang’an University, Xi’an, China
| | - Xiuhua Liu
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Region of Ministry of Water Resources, Chang’an University, Xi’an, China
| | - Ruiqing Ji
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Region of Ministry of Water Resources, Chang’an University, Xi’an, China
| | - Yandong Ma
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi’an, China
| | - Puxia Wu
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi’an, China
| | - Qingxi Cao
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi’an, China
| | - Yunling Xin
- Key Laboratory of State Forest Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry, Xi’an, China
| |
Collapse
|
2
|
Zhao S, Zhao X, Li Y, Zhang R, Zhao Y, Fang H, Li W. Impact of altered groundwater depth on soil microbial diversity, network complexity and multifunctionality. Front Microbiol 2023; 14:1214186. [PMID: 37601343 PMCID: PMC10434790 DOI: 10.3389/fmicb.2023.1214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Understanding the effects of groundwater depth on soil microbiota and multiple soil functions is essential for ecological restoration and the implementation of groundwater conservation. The current impact of increased groundwater levels induced by drought on soil microbiota and multifunctionality remains ambiguous, which impedes our understanding of the sustainability of water-scarce ecosystems that heavily rely on groundwater resources. This study investigated the impacts of altered groundwater depths on soil microbiota and multifunctionality in a semi-arid region. Three groundwater depth levels were studied, with different soil quality and soil moisture at each level. The deep groundwater treatment had negative impacts on diversity, network complexity of microbiota, and the relationships among microbial phylum unites. Increasing groundwater depth also changed composition of soil microbiota, reducing the relative abundance of dominant phyla including Proteobacteria and Ascomycota. Increasing groundwater depth led to changes in microbial community characteristics, which are strongly related to alterations in soil multifunctionality. Overall, our results suggest that groundwater depth had a strongly effect on soil microbiota and functionality.
Collapse
Affiliation(s)
- Siteng Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Rui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yanming Zhao
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Hong Fang
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| | - Wenshuang Li
- Tongliao Hydrology and Water Resources Sub-center, Tongliao, China
| |
Collapse
|
3
|
Morra B, Brisbin H, Stringham T, Sullivan BW. Ecosystem carbon and nitrogen gains following 27 years of grazing management in a semiarid alluvial valley. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117724. [PMID: 36966635 DOI: 10.1016/j.jenvman.2023.117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Soils in semiarid riparian ecosystems have large carbon (C) stocks that promote water and nutrient availability for productive plant communities consumed by grazing animals. Changes to riparian hydrologic conditions caused by channel incision result in different edaphic conditions and a greater abundance of upland plant species that may be associated with lower soil C stocks. Using riparian meadows alongside Maggie Creek in central Nevada, we show that 27 years of modified grazing practices can repair ecosystem processes and increase the C stocks. We compared C and nitrogen (N) stocks (of soils and plant biomass) on floodplains, terraces, and uplands of reaches where grazing was either modified or excluded to reaches where no changes to grazing practices were made. Grazing management allowed beaver to establish, improving hydrology and lengthening the growing season. These changes allowed C and N to accumulate on geomorphic surfaces that extended from the stream channel to the surrounding hillslopes. A stoichiometric relationship between C and N shows carbon sequestration can reduce nutrient runoff to nearby waterways and may depend on nitrogen availability. Gains in ecosystem carbon ranged from 93 to 452 g C m-2 y-1 and were dominated by increases in soil C. Gains in soil C occurred across the full depth range measured (0-45 cm) and were comparable to those found in restored wetlands and meadows located in more humid ecosystems. Carbon gains exhibited substantial variability caused by microtopography and plant community composition. While grazing exclusion resulted in the largest gains in ecosystem C, managed grazing that limited consumption of riparian plants increased ecosystem C relative to reaches where management wasn't changed. We demonstrate that managed grazing that maintains ecosystem process is compatible with projects aimed at increasing soil carbon in semiarid riparian rangelands.
Collapse
Affiliation(s)
- Brian Morra
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Hondo Brisbin
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Tamzen Stringham
- Department of Agriculture, Veterinary, and Rangeland Sciences, The University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Benjamin W Sullivan
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA; The Global Water Center, The University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| |
Collapse
|
4
|
Zhao S, Zhao X, Li Y, Chen X, Li C, Fang H, Li W, Guo W. Impact of deeper groundwater depth on vegetation and soil in semi-arid region of eastern China. FRONTIERS IN PLANT SCIENCE 2023; 14:1186406. [PMID: 37457335 PMCID: PMC10342210 DOI: 10.3389/fpls.2023.1186406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Introduction Understanding the impact of deep groundwater depth on vegetation communities and soil in sand dunes with different underground water tables is essential for ecological restoration and the conservation of groundwater. Furthermore, this understanding is critical for determining the threshold value of groundwater depth that ensures the survival of vegetation. Method This paper was conducted in a semi-arid region in eastern China, and the effects of deep groundwater depth (6.25 m, 10.61 m, and 15.26 m) on vegetation communities and soil properties (0-200 cm) across three dune types (mobile, semi-fixed, and fixed dunes) were evaluated in a sand ecosystem in the Horqin Sandy Land. Results For vegetation community, variations in the same species are more significant at different groundwater depths. For soil properties, groundwater depth negatively influences soil moisture, total carbon, total nitrogen, available nitrogen, available phosphorus concentrations, and soil pH. Besides, groundwater depth also significantly affected organic carbon and available potassium concentrations. In addition, herb species were mainly distributed in areas with lower groundwater depth, yet arbor and shrub species were sparsely distributed in places with deeper groundwater depth. Discussion As arbor and shrub species are key drivers of ecosystem sustainability, the adaptation of these dominant species to increasing groundwater depth may alleviate the negative effects of increasing groundwater depth; however, restrictions on this adaptation were exceeded at deeper groundwater depth.
Collapse
Affiliation(s)
- Siteng Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, China
| | - Xueping Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengyi Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Fang
- Tongliao Hydrology and Water Resources Sub-Center, Tongliao, China
| | - Wenshuang Li
- Tongliao Hydrology and Water Resources Sub-Center, Tongliao, China
| | - Wei Guo
- Tongliao Hydrology and Water Resources Sub-Center, Tongliao, China
| |
Collapse
|
5
|
Reed CC, Berhe AA, Moreland KC, Wilcox J, Sullivan BW. Restoring function: Positive responses of carbon and nitrogen to 20 years of hydrologic restoration in montane meadows. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2677. [PMID: 35587656 DOI: 10.1002/eap.2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Montane meadows are highly productive ecosystems that contain high densities of soil carbon (C) and nitrogen (N). However, anthropogenic disturbances that have led to channel incision and disconnected floodplain hydrology have altered the C balance of many meadows, converting them from net C sinks to net sources of C to the atmosphere. Restoration efforts designed to reconnect floodplain hydrology may slow rates of soil C loss from degraded meadows and restore the conditions for C sequestration and N immobilization, yet questions remain about the long-term impact of such efforts. Here, we used a 22-year meadow restoration chronosequence to measure the decadal impact of hydrologic restoration on aboveground and belowground C and N stocks and concentrations. Increases in herbaceous vegetation biomass preceded changes in soil C stocks, with the largest gains occurring belowground. Root biomass (0-15 cm) increased at a rate of 270.3 g m-2 year-1 and soil C stocks (0-15 cm) increased by 232.9 g C m-2 year-1 across the chronosequence. Increases in soil C concentration (2.99 g C kg-1 year-1 ) were tightly coupled with increases in soil N concentration (0.21 g N kg-1 year-1 ) and soil C:N did not vary with time since restoration. Fourier transform infrared spectroscopy results showed that the fraction of labile aliphatic C-H and carboxylate C-O (COO) compounds in the soil increased with the age of restoration and were positively correlated with soil C and N concentrations. Our results demonstrate that restoration of floodplain hydrology in montane meadows has significant impacts on belowground C and N stocks, soil C and N concentration, and soil C chemistry within the first two decades following restoration.
Collapse
Affiliation(s)
- Cody C Reed
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, Reno, Nevada, USA
| | - Asmeret A Berhe
- Department of Life and Environmental Sciences, University of California Merced, Merced, California, USA
| | - Kimber C Moreland
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jim Wilcox
- Plumas Corporation, Quincy, California, USA
| | - Benjamin W Sullivan
- Department of Natural Resources and Environmental Science, The University of Nevada, Reno, Reno, Nevada, USA
- The Global Water Center, The University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|