2
|
Dong Y, Lin Y, Khatri L, Chao M, Aoki C. Ketogenic Food Ameliorates Activity-Based Anorexia of Adult Female Mice. Int J Eat Disord 2024. [PMID: 39548909 DOI: 10.1002/eat.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE Genome-wide association studies implicate metabo-psychiatric origins for anorexia nervosa (AN). There are two case reports totaling six adult females who experienced complete remission of AN following a treatment comprised of ketogenic diet (targeting metabolism) with ketamine infusions (targeting psychiatric origins), but no study has determined the efficacy of ketogenic diet, alone. We addressed this gap in knowledge, with exploration of potential molecular mechanisms, using an animal model. METHOD Adult C57BL6 female mice underwent 2 or 3 cycles of activity-based anorexia (ABA1, ABA2, ABA3), an animal model of AN relapse, in which AN-like maladaptive behaviors of hyperactivity and voluntary food restriction are elicited when wheel access is combined with food restriction. ABA was categorized as severe, based on weight loss ≥ 20%, food restriction-evoked increase in wheel counts > 10,000/6 h, and crouching/grimace, and compared across two groups: (1) KG, fed ketogenic food continuously (N = 25); and (2) CON, fed standard diet (N = 28). RESULTS 86% of CON versus none of the KG were crouching with grimace during ABA1. 93% of CON versus 11% of KG lost weight severely during ABA2 (p < 0.001, 8% difference of group mean weights). Severe hyperactivity was prevalent among CON (86%) and rare for KG (4%) during ABA2 (p < 0.001 on all food-restricted days). ABA up-regulated BDNF (brain-derived neurotrophic factor) in the hippocampus of both groups but ketone body, β-hydroxybutyrate, in urine was increased only among KG. DISCUSSION Ketogenic diet may reduce severity of AN relapse through reduction of compulsive exercise, via mechanisms that are in addition to BDNF up-regulation and involve β-hydroxybutyrate.
Collapse
Affiliation(s)
- Yiru Dong
- Center for Neural Science, New York University, New York, New York, USA
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Yuki Lin
- Center for Neural Science, New York University, New York, New York, USA
| | - Latika Khatri
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Moses Chao
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York, USA
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| |
Collapse
|
5
|
Salaün C, Courvalet M, Rousseau L, Cailleux K, Breton J, Bôle-Feysot C, Guérin C, Huré M, Goichon A, do Rego JC, Déchelotte P, Ribet D, Achamrah N, Coëffier M. Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut-microbiota composition during activity-based anorexia in mice. Biol Sex Differ 2024; 15:6. [PMID: 38217033 PMCID: PMC10785476 DOI: 10.1186/s13293-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition. METHODS From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. RESULTS ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. CONCLUSIONS This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.
Collapse
Affiliation(s)
- Colin Salaün
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marine Courvalet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Léna Rousseau
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Kévin Cailleux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marion Huré
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jean-Claude do Rego
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Univ Rouen Normandie, Inserm, CNRS, Normandie Univ, HERACLES US 51 UAR 2026, Behavioural Analysis Platform SCAC, 76000, Rouen, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Najate Achamrah
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France.
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|