1
|
Mezzomo P, Leong JV, Vodrážka P, Moos M, Jorge LR, Volfová T, Michálek J, de L Ferreira P, Kozel P, Sedio BE, Volf M. Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory? PHYTOCHEMISTRY 2024; 226:114222. [PMID: 39047854 DOI: 10.1016/j.phytochem.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.
Collapse
Affiliation(s)
- Priscila Mezzomo
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Jing V Leong
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Leonardo R Jorge
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Algatech Centre, Institute of Microbiology, Trebon, Czech Republic
| | - Paola de L Ferreira
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Aarhus University, Department of Biology, Aarhus, Denmark
| | - Petr Kozel
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, United States; Smithsonian Tropical Research Institute, Balboa, the Republic of Panama
| | - Martin Volf
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Leong JV, Mezzomo P, Kozel P, Volfová T, de Lima Ferreira P, Seifert CL, Butterill PT, Freiberga I, Michálek J, Matos-Maraví P, Weinhold A, Engström MT, Salminen JP, Segar ST, Sedio BE, Volf M. Effects of individual traits vs. trait syndromes on assemblages of various herbivore guilds associated with central European Salix. Oecologia 2024; 205:725-737. [PMID: 38829402 DOI: 10.1007/s00442-024-05569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.
Collapse
Affiliation(s)
- Jing V Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | - Priscila Mezzomo
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Petr Kozel
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carlo L Seifert
- Department of Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Phillip T Butterill
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Institute of Microbiology, Centre Algatech Czech Academy of Sciences, Trebon, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marica T Engström
- Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, United Kingdom
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
4
|
Volf M, Renoult SA, Panthee S, van Dam NM. Quantifying various aspects of chemical diversity in hybrid plants can help understanding ecological consequences of hybridization. AMERICAN JOURNAL OF BOTANY 2024; 111:e16283. [PMID: 38332482 DOI: 10.1002/ajb2.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Sofian A Renoult
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Shristee Panthee
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Nicole M van Dam
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität Jena, Dornburgerstraße 159, Jena, 07745, Germany
| |
Collapse
|