1
|
Johnson HA, Rondeau EB, Sutherland BJG, Minkley DR, Leong JS, Whitehead J, Despins CA, Gowen BE, Collyard BJ, Whipps CM, Farrell JM, Koop BF. Loss of genetic variation and ancestral sex determination system in North American northern pike characterized by whole-genome resequencing. G3 (BETHESDA, MD.) 2024; 14:jkae183. [PMID: 39115373 PMCID: PMC11457062 DOI: 10.1093/g3journal/jkae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/28/2024] [Indexed: 10/08/2024]
Abstract
The northern pike Esox lucius is a freshwater fish with low genetic diversity but ecological success throughout the Northern Hemisphere. Here, we generate an annotated chromosome-level genome assembly of 941 Mbp in length with 25 chromosome-length scaffolds. We then genotype 47 northern pike from Alaska through New Jersey at a genome-wide scale and characterize a striking decrease in genetic diversity along the sampling range. Individuals west of the North American Continental Divide have substantially higher diversity than those to the east (e.g. Interior Alaska and St. Lawrence River have on average 181 and 64K heterozygous SNPs per individual, or a heterozygous SNP every 5.2 and 14.6 kbp, respectively). Individuals clustered within each population with strong support, with numerous private alleles observed within each population. Evidence for recent population expansion was observed for a Manitoba hatchery and the St. Lawrence population (Tajima's D = -1.07 and -1.30, respectively). Several chromosomes have large regions with elevated diversity, including LG24, which holds amhby, the ancestral sex determining gene. As expected amhby was largely male-specific in Alaska and the Yukon and absent southeast to these populations, but we document some amhby(-) males in Alaska and amhby(+) males in the Columbia River, providing evidence for a patchwork of presence of this system in the western region. These results support the theory that northern pike recolonized North America from refugia in Alaska and expanded following deglaciation from west to east, with probable founder effects resulting in loss of both neutral and functional diversity (e.g. amhby).
Collapse
Affiliation(s)
- Hollie A Johnson
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Eric B Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
- Sutherland Bioinformatics, Lantzville V0R 2H0, British Columbia, Canada
| | - David R Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Jong S Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Joanne Whitehead
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Cody A Despins
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Brent E Gowen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Brian J Collyard
- Alaska Department of Fish and Game, Division of Sport Fish, 1300 College Rd, Fairbanks, AK 99701-1599, USA
| | - Christopher M Whipps
- Center for Applied Microbiology, Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - John M Farrell
- Thousand Island Biological Station, Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| |
Collapse
|
2
|
Rougemont Q, Carrier A, Le Luyer J, Ferchaud A, Farrell JM, Hatin D, Brodeur P, Bernatchez L. Combining population genomics and forward simulations to investigate stocking impacts: A case study of Muskellunge ( Esox masquinongy) from the St. Lawrence River basin. Evol Appl 2019; 12:902-922. [PMID: 31080504 PMCID: PMC6503833 DOI: 10.1111/eva.12765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Understanding the genetic and evolutionary impacts of stocking on wild fish populations has long been of interest as negative consequences such as reduced fitness and loss of genetic diversity are commonly reported outcomes. In an attempt to sustain a fishery, managers implemented nearly five decades of extensive stocking of over a million Muskellunge (Esox masquinongy), a native species in the Lower St. Lawrence River (Québec, Canada). We investigated the effect of this stocking on population genetic structure and allelic diversity in the St. Lawrence River in addition to tributaries and several stocked inland lakes. Using genotype by sequencing, we genotyped 643 individuals representing 22 locations and combined this information with forward simulations to investigate the genetic consequences of long-term stocking. Individuals native to the St. Lawrence watershed were genetically differentiated from stocking sources and tributaries, and inland lakes were naturally differentiated from the main river. Empirical data and simulations within the St. Lawrence River revealed weak stocking effects on admixture patterns. Our data suggest that the genetic structure associated with stocked fish was diluted into its relatively large effective population size. This interpretation is also consistent with a hypothesis that selection against introgression was in operation and relatively efficient within the large St. Lawrence River system. In contrast, smaller populations from adjacent tributaries and lakes displayed greater stocking-related admixture that resulted in comparatively higher heterozygosity than the St. Lawrence. Finally, individuals from inland lakes that were established by stocking maintained a close affinity with their source populations. This study illustrated a benefit of combining extensive genomic data with forward simulations for improved inference regarding population-level genetic effects of long-term stocking, and its relevance for fishery management decision making.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Anne Carrier
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Jeremy Le Luyer
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- IFREMER, Unité Ressources Marines en Polynésie, Centre Océanologique du PacifiqueTaravao, TahitiFrench Polynesia
| | - Anne‐Laure Ferchaud
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - John M. Farrell
- Department of Environmental and Forest Biology, College of Environmental Science and ForestryState University of New YorkSyracuseNew York
| | - Daniel Hatin
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la FauneEstrie‐Montréal‐Montérégie‐LavalLongueuilQuébecCanada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des ParcsDirection de la gestion de la faune de la Mauricie et du Centre‐du‐QuébecTrois‐RivièresQuebecCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| |
Collapse
|
3
|
Oliveira JDA, Farias IP, Costa GC, Werneck FP. Model-based riverscape genetics: disentangling the roles of local and connectivity factors in shaping spatial genetic patterns of two Amazonian turtles with different dispersal abilities. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|