1
|
Sheta B, Waheed O, Ayad E, Habbak L, Hyder A. Constitutive immunity is influenced by avian influenza virus-induced modification of gut microbiota in Eurasian teal (Anas crecca). Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109867. [PMID: 38373511 DOI: 10.1016/j.cbpc.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Understanding the dynamics of migrant birds' gut microbial communities is essential for evaluating their ecological interactions, since these birds act as vectors for zoonotic viruses and their gut microbiome may have exceptional relationship with zoonotic viral infection. The Eurasian teal duck Anas crecca traverses continents during migration, combining and providing intercontinental links for avian influenza viruses (AIV) of different origins. The present study aimed to investigate how the AIV infection affects gut microbial composition and evaluate the consequent physiological stress and constitutive immunity of teal birds. Samples were collected from 2 flocks during their migratory stopover in northern Egypt. An important shift in gut microbiota of AIV-infected individuals has been detected by RT-PCR. In healthy teal, firmicutes dominated followed by proteobacteria, while the structure was reversed in infected birds. Infection with AIV significantly increased the stress hormone corticosterone, accompanied by a significant increase in both oxidative stress markers and antioxidants. Constitutive immunity, measured by plasma bactericidal effect against E. coli, the nonspecific natural antibodies, and the mediated complement activation, was reduced in AIV-infected teal birds. Constitutive immunity parameters were proportionally correlated to the firmicutes and inversely to the proteobacteria abundances, but not to the viral positivity. In conclusion, the present study provides initial evidence of the alteration of the gut microbiome in the Eurasian teal Anas crecca by AIV infection and demonstrates that the AIV-induced reduction in constitutive immunity is a consequence of the shift in microbiome composition rather than the virus infection itself or its induced stress.
Collapse
Affiliation(s)
- Basma Sheta
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Omnia Waheed
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Lotfy Habbak
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Ayman Hyder
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
2
|
Jax E, Werner E, Müller I, Schaerer B, Kohn M, Olofsson J, Waldenström J, Kraus RHS, Härtle S. Evaluating Effects of AIV Infection Status on Ducks Using a Flow Cytometry-Based Differential Blood Count. Microbiol Spectr 2023; 11:e0435122. [PMID: 37318353 PMCID: PMC10434237 DOI: 10.1128/spectrum.04351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Elena Werner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Inge Müller
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Beatrice Schaerer
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| | - Marina Kohn
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| | - Jenny Olofsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, LMU Munich, Planegg, Germany
| |
Collapse
|
3
|
Should I stay, should I go, or something in between? The potential for parasite-mediated and age-related differential migration strategies. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSeasonal long-distance migratory behaviour of trillions of animals may in part have evolved to reduce parasite infection risk, and the fitness costs that may come with these infections. This may apply to a diversity of vertebrate migration strategies that can sometimes be observed within species and may often be age-dependent. Herein we review some common age-related variations in migration strategy, discussing why in some animal species juveniles preferentially forego or otherwise rearrange their migrations as compared to adults, potentially as an either immediate (proximate) or anticipatory (ultimate) response to infection risk and disease. We notably focus on the phenomenon of “oversummering”, where juveniles abstain from migration to the breeding grounds. This strategy is particularly prevalent amongst migratory shorebirds and has thus far received little attention as a strategy to reduce parasite infection rate, while comparative intra-specific research approaches have strong potential to elucidate the drivers of differential behavioural strategies.
Collapse
|
4
|
Hayer J, Wille M, Font A, González-Aravena M, Norder H, Malmberg M. Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile. Virology 2021; 560:116-123. [PMID: 34058706 DOI: 10.1016/j.virol.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.
Collapse
Affiliation(s)
- Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Alejandro Font
- nstituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
5
|
van Dijk JGB, Verhagen JH, Hegemann A, Tolf C, Olofsson J, Järhult JD, Waldenström J. A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards. Front Microbiol 2020; 11:608274. [PMID: 33329501 PMCID: PMC7733965 DOI: 10.3389/fmicb.2020.608274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naïve mallards.
Collapse
Affiliation(s)
- Jacintha G B van Dijk
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jenny Olofsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Lee K, Yu D, Martínez-López B, Yoon H, Kang SI, Hong SK, Lee I, Kang Y, Jeong W, Lee E. Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014-2015. Sci Rep 2020; 10:18631. [PMID: 33122803 PMCID: PMC7596240 DOI: 10.1038/s41598-020-75698-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Wild migratory waterfowl are considered one of the most important reservoirs and long-distance carriers of highly pathogenic avian influenza (HPAI). Our study aimed to explore the spatial and temporal characteristics of wild migratory waterfowl’s wintering habitat in the Republic of Korea (ROK) and to evaluate the impact of these habitats on the risk of HPAI outbreaks in commercial poultry farms. The habitat use of 344 wild migratory waterfowl over four migration cycles was estimated based on tracking records. The association of habitat use with HPAI H5N8 outbreaks in poultry farms was evaluated using a multilevel logistic regression model. We found that a poultry farm within a wild waterfowl habitat had a 3–8 times higher risk of HPAI outbreak than poultry farms located outside of the habitat. The range of wild waterfowl habitats increased during autumn migration, and was associated with the epidemic peak of HPAI outbreaks on domestic poultry farms in the ROK. Our findings provide a better understanding of the dynamics of HPAI infection in the wildlife–domestic poultry interface and may help to establish early detection, and cost-effective preventive measures.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Daesung Yu
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea.
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hachung Yoon
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Sung-Il Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Seong-Keun Hong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Ilseob Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Yongmyung Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Wooseg Jeong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Eunesub Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| |
Collapse
|
7
|
Yin S, de Knegt HJ, de Jong MCM, Si Y, Prins HHT, Huang ZYX, de Boer WF. Effects of migration network configuration and migration synchrony on infection prevalence in geese. J Theor Biol 2020; 502:110315. [PMID: 32387368 DOI: 10.1016/j.jtbi.2020.110315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/15/2022]
Abstract
Migration can influence dynamics of pathogen-host interactions. However, it is not clearly known how migration pattern, in terms of the configuration of the migration network and the synchrony of migration, affects infection prevalence. We therefore applied a discrete-time SIR model, integrating environmental transmission and migration, to various migration networks, including networks with serial, parallel, or both serial and parallel stopover sites, and with various levels of migration synchrony. We applied the model to the infection of avian influenza virus in a migratory geese population. In a network with only serial stopover sites, increasing the number of stopover sites reduced infection prevalence, because with every new stopover site, the amount of virus in the environment was lower than that in the previous stopover site, thereby reducing the exposure of the migratory population. In a network with parallel stopover sites, both increasing the number and earlier appearance of the stopover sites led to an earlier peak of infection prevalence in the migratory population, because the migratory population is exposed to larger total amount of virus in the environment, speeding-up the infection accumulation. Furthermore, higher migration synchrony reduced the average number of cumulative infection, because the majority of the population can fly to a new stopover site where the amount of virus is still relatively low and has not been increased due to virus shedding of infected birds. Our simulations indicate that a migration pattern with multiple serial stopover sites and with highly synchronized migration reduces the infection prevalence.
Collapse
Affiliation(s)
- Shenglai Yin
- Wildlife Ecology and Conservation Group, Wageningen University, 6708PB Wageningen, The Netherlands.
| | - Henrik J de Knegt
- Wildlife Ecology and Conservation Group, Wageningen University, 6708PB Wageningen, The Netherlands.
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology Group, Wageningen University, 6708PB Wageningen, The Netherlands.
| | - Yali Si
- Institute for China Sustainable Urbanization, Tsinghua University, 100091 Beijing, China; Institute of Environmental Sciences, Leiden University, 2300RA Leiden, Netherlands.
| | - Herbert H T Prins
- Wildlife Ecology and Conservation Group, Wageningen University, 6708PB Wageningen, The Netherlands.
| | - Zheng Y X Huang
- College of Life Science, Nanjing Normal University, 210046 Nanjing, China.
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
8
|
|
9
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Wille M, Bröjer C, Lundkvist Å, Järhult JD. Alternate routes of influenza A virus infection in Mallard (Anas platyrhynchos). Vet Res 2018; 49:110. [PMID: 30373662 PMCID: PMC6206871 DOI: 10.1186/s13567-018-0604-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Abstract
The natural reservoir for all influenza A viruses (IAVs) is wild birds, particularly dabbling ducks. During the autumn, viral prevalence can be very high in dabbling ducks (> 30%) in the Northern Hemisphere, and individuals may be repeatedly infected. Transmission and infection is through the fecal-oral route, whereby birds shed viruses in feces and conspecifics are infected though feeding in virus-contaminated water. In this study we wanted to assess two alternative infection routes: cloacal drinking and preening. Using experimental infections, we assessed patterns of infection using a combination of virus shedding, as assessed by real-time PCR from cloacal swabs, and patterns of viral replication using virus-immunohistochemistry of gastrointestinal tissues. The cloacal drinking experiment consisted of two trials using cloacal inoculation at two different time points to account for age differences, as well as a trial whereby ducks were allowed to take up virus-laden water through the cloaca. All ducks became infected, and rather than the bursa of Fabricius being the main site of replication, the colon had the highest intensity of replication, as inferred through immunohistochemistry. In experiments assessing preening, feathers were contaminated with virus-laden water and all ducks became infected, regardless of whether they were kept individually or together. Further, naive contacts were infected by the individuals whose feathers were virus-contaminated. Overall, we reinforce that IAV transmission in dabbling ducks is multifactorial-if exposed to virus-contaminated water ducks may be infected through dabbling, preening of infected feathers, and cloacal drinking.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. .,WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Hegemann A, Alcalde Abril P, Sjöberg S, Muheim R, Alerstam T, Nilsson JÅ, Hasselquist D. A mimicked bacterial infection prolongs stopover duration in songbirds-but more pronounced in short- than long-distance migrants. J Anim Ecol 2018; 87:1698-1708. [PMID: 30101481 DOI: 10.1111/1365-2656.12895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/05/2018] [Indexed: 11/26/2022]
Abstract
Migration usually consists of intermittent travel and stopovers, the latter being crucially important for individuals to recover and refuel to successfully complete migration. Quantifying how sickness behaviours influence stopovers is crucial for our understanding of migration ecology and how diseases spread. However, little is known about infections in songbirds, which constitute the majority of avian migrants. We experimentally immune-challenged autumn migrating passerines (both short- and long-distance migrating species) with a simulated bacterial infection. Using an automated radiotelemetry system in the stopover area, we subsequently quantified stopover duration, "bush-level" activity patterns (0.1-30 m) and landscape movements (30-6,000 m). We show that compared to controls, immune-challenged birds prolonged their stopover duration by on average 1.2 days in long-distance and 2.9 days in short-distance migrants, respectively (100%-126% longer than controls, respectively). During the prolonged stopover, the immune-challenged birds kept a high "bush-level" activity (which was unexpected) but reduced their local movements, independent of migration strategy. Baseline immune function, but not blood parasite infections prior to the immune challenge, had a prolonging effect on stopover duration, particularly in long-distance migrants. We conclude that a mimicked bacterial infection does not cause lethargy, per se, but restricts landscape movements and prolongs stopover duration, and that this behavioural response also depends on the status of baseline immune function and migration strategy. This adds a new level to the understanding of how acute inflammation affect migration behaviour and hence the ecology and evolution of migration. Accounting for these effects of bacterial infections will also enable us to fine-tune and apply optimal migration theory. Finally, it will help us predicting how migrating animals may respond to increased pathogen pressure caused by global change.
Collapse
Affiliation(s)
- Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | | | - Sissel Sjöberg
- Department of Biology, Lund University, Lund, Sweden.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, København Ø, Denmark
| | - Rachel Muheim
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
12
|
A rapid and transient innate immune response to avian influenza infection in mallards. Mol Immunol 2018; 95:64-72. [PMID: 29407578 DOI: 10.1016/j.molimm.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022]
Abstract
The vertebrate innate immune system provides hosts with a rapid, non-specific response to a wide range of invading pathogens. However, the speed and duration of innate responses will be influenced by the co-evolutionary dynamics of specific host-pathogen combinations. Here, we show that low pathogenic avian influenza virus (LPAI) subtype H1N1 elicits a strong but extremely transient innate immune response in its main wildlife reservoir, the mallard (Anas platyrhynchos). Using a series of experimental and methodological improvements over previous studies, we followed the expression of retinoic acid inducible gene 1 (RIG-I) and myxovirus resistance gene (Mx) in mallards semi-naturally infected with low pathogenic H1N1. One day post infection, both RIG-I and Mx were significantly upregulated in all investigated tissues. By two days post infection, the expression of both genes had generally returned to basal levels, and remained so for the remainder of the experiment. This is despite the fact that birds continued to actively shed viral particles throughout the study period. We additionally show that the spleen plays a particularly active role in the innate immune response to LPAI. Waterfowl and avian influenza viruses have a long co-evolutionary history, suggesting that the mallard innate immune response has evolved to provide a minimum effective response to LPAIs such that the viral infection is brought under control while minimising the damaging effects of a sustained immune response.
Collapse
|
13
|
van Dijk JGB, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol 2018; 28:26-36. [DOI: 10.1016/j.coviro.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
14
|
Risely A, Klaassen M, Hoye BJ. Migratory animals feel the cost of getting sick: A meta-analysis across species. J Anim Ecol 2017; 87:301-314. [PMID: 28994103 DOI: 10.1111/1365-2656.12766] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/01/2017] [Indexed: 01/22/2023]
Abstract
Migratory animals are widely assumed to play an important role in the long-distance dispersal of parasites, and are frequently implicated in the global spread of zoonotic pathogens such as avian influenzas in birds and Ebola viruses in bats. However, infection imposes physiological and behavioural constraints on hosts that may act to curtail parasite dispersal via changes to migratory timing ("migratory separation") and survival ("migratory culling"). There remains little consensus regarding the frequency and extent to which migratory separation and migratory culling may operate, despite a growing recognition of the importance of these mechanisms in regulating transmission dynamics in migratory animals. We quantitatively reviewed 85 observations extracted from 41 studies to examine how both infection status and infection intensity are related to changes in body stores, refuelling rates, movement capacity, phenology and survival in migratory hosts across taxa. Overall, host infection status was weakly associated with reduced body stores, delayed migration and lower survival, and more strongly associated with reduced movement. Infection intensity was not associated with changes to host body stores, but was associated with moderate negative effects on movement, phenology and survival. In conclusion, we found evidence for negative effects of infection on host phenology and survival, but the effects were relatively small. This may have implications for the extent to which migratory separation and migratory culling act to limit parasite dispersal in migratory systems. We propose a number of recommendations for future research that will further advance our understanding of how migratory separation and migratory culling may shape host-parasite dynamics along migratory routes globally.
Collapse
Affiliation(s)
- Alice Risely
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Bethany J Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia.,School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
15
|
Monteith KL, Long RA, Stephenson TR, Bleich VC, Bowyer RT, Lasharr TN. Horn size and nutrition in mountain sheep: Can ewe handle the truth? J Wildl Manage 2017. [DOI: 10.1002/jwmg.21338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kevin L. Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research UnitDepartment of Zoology and Physiology, University of Wyoming 804 East Fremont St. Laramie WY 82072 USA
| | - Ryan A. Long
- Department of Fish and Wildlife SciencesUniversity of Idaho 875 Perimeter Dr., MS 1142 Moscow ID 83844 USA
| | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery ProgramCalifornia Department of Fish and Wildlife 787 North Main Street, Suite 220 Bishop CA 93514 USA
| | - Vernon C. Bleich
- Department of Natural Resources and Environmental ScienceUniversity of Nevada Reno Mail Stop 186, 1664 North Virginia Street Reno NV 89557 USA
| | - R. Terry Bowyer
- Institute of Arctic BiologyUniversity of Alaska Fairbanks Box 757000 Fairbanks AK 99775 USA
| | - Tayler N. Lasharr
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and PhysiologyUniversity of Wyoming Dept. 3166, 1000 E. University Ave Laramie WY 82071 USA
| |
Collapse
|
16
|
Hegemann A, Pardal S, Matson KD. Indices of immune function used by ecologists are mostly unaffected by repeated freeze-thaw cycles and methodological deviations. Front Zool 2017; 14:43. [PMID: 28883887 PMCID: PMC5580329 DOI: 10.1186/s12983-017-0226-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past couple of decades, measuring immunological parameters has become widespread in studies of ecology and evolution. A combination of different immunological indices is useful for quantifying different parts of the immune system and comprehensively assessing immune function. Running multiple immune assays usually requires samples to be repeatedly thawed and re-frozen. There is some evidence that repeated freezing and thawing can affect assay results, but this has never been comprehensively studied in some common ecological immunology assays. We tested the effect of multiple (1, 2, 3, 4, 5, 10) freeze-thaw cycles on the results of four commonly used immunological assays: haemolysis-haemagglutination titres, haptoglobin concentration, bacterial killing capacity and total immunoglobulins (IgY). We tested five different bird species from four different bird orders (Passeriformes, Columbiformes, Charadriiformes and Galliformes), and we included both captive and free-living individuals. In addition, we tested for haptoglobin concentrations and the haemolysis-haemagglutination assay if re-analysing samples 1 year apart led to different results. For the haemolysis-haemagglutination assay we also tested two different sources of rabbit blood, and we compared untreated microtitre plates with plates that were "blocked" to prevent nonspecific interactions between the plate and assay reagents. RESULTS Repeated freezing and thawing of plasma had no effect on lysis titres, haptoglobin concentrations, bacterial killing capacity, or total immunoglobulin levels. Agglutination titres were unaffected by up to five cycles but were lower after ten freeze-thaw cycles. For the haemolysis-haemagglutination assay and haptoglobin concentrations, re-analysing samples 1 year apart yielded highly correlated data. For the haemolysis-haemagglutination assay, the source of rabbit blood did not influence the results, and the untreated vs. blocked plates differed slightly overall, but at the individual level assay results were highly correlated. Using different rabbit blood sources or different types of microtitre plates yielded highly correlated data. CONCLUSIONS Our data suggest that repeated freeze-thaw cycles do not impair assay results to the point of influencing ecological or evolutionary conclusions. Plasma samples can be safely stored in one tube and thawed repeatedly for different assays. Nevertheless, we recommend consistent treatment of samples in terms of freeze-thaw cycles or other laboratory treatments to minimize the potential for introducing a systematic bias.
Collapse
Affiliation(s)
- Arne Hegemann
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | - Sara Pardal
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Kevin D Matson
- Resource Ecology Group, Environmental Sciences Department, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
17
|
Abstract
Several ecologic factors have been proposed to describe the mechanisms whereby host ecology and the environment influence the transmission of avian influenza viruses (AIVs) in wild birds, including bird's foraging behavior, migratory pattern, seasonal congregation, the rate of recruitment of juvenile birds, and abiotic factors. However, these ecologic factors are derived from studies that have been conducted in temperate or boreal regions of the Northern Hemisphere. These factors cannot be directly translated to tropical regions, where differences in host ecology and seasonality may produce different ecologic interactions between wild birds and AIV. An extensive dataset of AIV detection in wildfowl and shorebirds sampled across tropical Africa was used to analyze how the distinctive ecologic features of Afrotropical regions may influence the dynamics of AIV transmission in wild birds. The strong seasonality of rainfall and surface area of wetlands allows testing of how the seasonality of wildfowl ecology (reproduction phenology and congregation) is related to AIV seasonal dynamics. The diversity of the African wildfowl community provides the opportunity to investigate the respective influence of migratory behavior, foraging behavior, and phylogeny on species variation in infection rate. Large aggregation sites of shorebirds in Africa allow testing for the existence of AIV infection hot spots. We found that the processes whereby host ecology influence AIV transmission in wild birds in the Afrotropical context operate through ecologic factors (seasonal drying of wetlands and extended and nonsynchronized breeding periods) that are different than the one described in temperate regions, hence, resulting in different patterns of AIV infection dynamics.
Collapse
Affiliation(s)
- Nicolas Gaidet
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité propre de recherche (UPR) Animal et gestion intégrée des risques (AGIRS), Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
18
|
Wille M, Lindqvist K, Muradrasoli S, Olsen B, Järhult JD. Urbanization and the dynamics of RNA viruses in Mallards (Anas platyrhynchos). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 51:89-97. [PMID: 28323070 PMCID: PMC7106234 DOI: 10.1016/j.meegid.2017.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
Abstract
Urbanization is intensifying worldwide, and affects the epidemiology of infectious diseases. However, the effect of urbanization on natural host-pathogen systems remains poorly understood. Urban ducks occupy an interesting niche in that they directly interact with both humans and wild migratory birds, and either directly or indirectly with food production birds. Here we have collected samples from Mallards (Anas platyrhynchos) residing in a pond in central Uppsala, Sweden, from January 2013 to January 2014. This artificial pond is kept ice-free during the winter months, and is a popular location where the ducks are fed, resulting in a resident population of ducks year-round. Nine hundred and seventy seven (977) fecal samples were screened for RNA viruses including: influenza A virus (IAV), avian paramyxovirus 1, avian coronavirus (CoV), and avian astrovirus (AstroV). This intra-annual dataset illustrates that these RNA viruses exhibit similar annual patterns to IAV, suggesting similar ecological factors are at play. Furthermore, in comparison to wild ducks, autumnal prevalence of IAV and CoV are lower in this urban population. We also demonstrate that AstroV might be a larger burden to urban ducks than IAV, and should be better assessed to demonstrate the degree to which wild birds contribute to the epidemiology of these viruses. The presence of economically relevant viruses in urban Mallards highlights the importance of elucidating the ecology of wildlife pathogens in urban environments, which will become increasingly important for managing disease risks to wildlife, food production animals, and humans.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Kristine Lindqvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shaman Muradrasoli
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Yin S, Kleijn D, Müskens GJDM, Fouchier RAM, Verhagen JH, Glazov PM, Si Y, Prins HHT, de Boer WF. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground. PLoS One 2017; 12:e0177790. [PMID: 28542340 PMCID: PMC5436700 DOI: 10.1371/journal.pone.0177790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022] Open
Abstract
Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis), Barnacle goose (Branta leucopsis) and Greater white-fronted goose (Anser albifrons), from their breeding grounds, spring stopover sites, and wintering grounds. We tested if the geese were infected with low pathogenic avian influenza virus outside of their wintering grounds, and analysed the spatial and temporal patterns of infection prevalence on their wintering grounds. Our results show that geese were not infected before their arrival on wintering grounds. Barnacle geese and Greater white-fronted geese had low prevalence of infection just after their arrival on wintering grounds in the Netherlands, but the prevalence increased in successive months, and peaked after December. This suggests that migratory geese are exposed to the virus after their arrival on wintering grounds, indicating that migratory geese might not disperse low pathogenic avian influenza virus during autumn migration.
Collapse
Affiliation(s)
- Shenglai Yin
- Resource Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail: (SY); (WFdB)
| | - David Kleijn
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Gerard J. D. M. Müskens
- Alterra, Centre for Ecosystem Studies, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Josanne H. Verhagen
- Department Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Petr M. Glazov
- Laboratory of Biogeography, Institute of Geography Russian Academy of Sciences, Moscow, Russia
| | - Yali Si
- Resource Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
- Ministry of Education Key Laboratory for Earth System Modelling, and Department of Earth System Science, Tsinghua University, Beijing, China
| | - Herbert H. T. Prins
- Resource Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem Frederik de Boer
- Resource Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail: (SY); (WFdB)
| |
Collapse
|
20
|
Dannemiller NG, Webb CT, Wilson KR, Bentler KT, Mooers NL, Ellis JW, Root JJ, Franklin AB, Shriner SA. Impact of body condition on influenza A virus infection dynamics in mallards following a secondary exposure. PLoS One 2017; 12:e0175757. [PMID: 28423047 PMCID: PMC5396890 DOI: 10.1371/journal.pone.0175757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Migratory waterfowl are often viewed as vehicles for the global spread of influenza A viruses (IAVs), with mallards (Anas platyrhynchos) implicated as particularly important reservoir hosts. The physical demands and energetic costs of migration have been shown to influence birds' body condition; poorer body condition may suppress immune function and affect the course of IAV infection. Our study evaluated the impact of body condition on immune function and viral shedding dynamics in mallards naturally exposed to an H9 IAV, and then secondarily exposed to an H4N6 IAV. Mallards were divided into three treatment groups of 10 birds per group, with each bird's body condition manipulated as a function of body weight by restricting food availability to achieve either a -10%, -20%, or control body weight class. We found that mallards exhibit moderate heterosubtypic immunity against an H4N6 IAV infection after an infection from an H9 IAV, and that body condition did not have an impact on shedding dynamics in response to a secondary exposure. Furthermore, body condition did not affect aspects of the innate and adaptive immune system, including the acute phase protein haptoglobin, heterophil/lymphocyte ratios, and antibody production. Contrary to recently proposed hypotheses and some experimental evidence, our data do not support relationships between body condition, infection and immunocompetence following a second exposure to IAV in mallards. Consequently, while annual migration may be a driver in the maintenance and spread of IAVs, the energetic demands of migration may not affect susceptibility in mallards.
Collapse
Affiliation(s)
- Nicholas G. Dannemiller
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Colleen T. Webb
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kenneth R. Wilson
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kevin T. Bentler
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Nicole L. Mooers
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Jeremy W. Ellis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - J. Jeffrey Root
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Alan B. Franklin
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Susan A. Shriner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
21
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
22
|
Hill NJ, Runstadler JA. A Bird's Eye View of Influenza A Virus Transmission: Challenges with Characterizing Both Sides of a Co-Evolutionary Dynamic. Integr Comp Biol 2016; 56:304-16. [PMID: 27252222 PMCID: PMC5964799 DOI: 10.1093/icb/icw055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship between bird host and IAV may appear stable at the organismal level, but is highly dynamic at the molecular level manifesting in a constant trade-off between transmissibility and virulence of the virus. Characterizing both sides of the host-virus dynamic has presented a challenge for ecologists and virologists alike, despite the potential for this approach to provide insights into which conditions destabilize the equilibrium state resulting in outbreaks or mortality of hosts in extreme cases. The use of different methods that are either host-centric or virus-centric has made it difficult to reconcile the disparate fields of host ecology and virology for investigating and ultimately predicting wild bird-mediated transmission of IAV. This review distills some of the key lessons learned from virological and ecological studies and explores the promises and pitfalls of both approaches. Ultimately, reconciling ecological and virological approaches hinges on integrating scales for measuring host-virus interactions. We argue that prospects for finding common scales for measuring wild bird-influenza dynamics are improving due to advances in genomic sequencing, host-tracking technology and remote sensing data, with the unit of time (months, year, or seasons) providing a starting point for crossover.
Collapse
Affiliation(s)
- Nichola J Hill
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| | - Jonathan A Runstadler
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| |
Collapse
|
23
|
Hoye BJ, Munster VJ, Huig N, de Vries P, Oosterbeek K, Tijsen W, Klaassen M, Fouchier RAM, van Gils JA. Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integr Comp Biol 2016; 56:317-29. [PMID: 27252210 PMCID: PMC5007603 DOI: 10.1093/icb/icw038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.
Collapse
Affiliation(s)
- Bethany J Hoye
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Vincent J Munster
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naomi Huig
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter de Vries
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees Oosterbeek
- SOVON Texel, Dutch Center for Field Ornithology, Den Burg (Texel), The Netherlands
| | - Wim Tijsen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ron A M Fouchier
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg (Texel), The Netherlands
| |
Collapse
|
24
|
Meixell BW, Arnold TW, Lindberg MS, Smith MM, Runstadler JA, Ramey AM. Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation. Parasit Vectors 2016; 9:390. [PMID: 27387437 PMCID: PMC4936110 DOI: 10.1186/s13071-016-1666-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites. METHODS We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. RESULTS We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. CONCLUSIONS We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.
Collapse
Affiliation(s)
- Brandt W. Meixell
- />Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108 USA
- />U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508 USA
| | - Todd W. Arnold
- />Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Mark S. Lindberg
- />Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775 USA
| | - Matthew M. Smith
- />U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508 USA
| | - Jonathan A. Runstadler
- />Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Andrew M. Ramey
- />U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508 USA
| |
Collapse
|
25
|
Bengtsson D, Safi K, Avril A, Fiedler W, Wikelski M, Gunnarsson G, Elmberg J, Tolf C, Olsen B, Waldenström J. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host? ROYAL SOCIETY OPEN SCIENCE 2016; 3:150633. [PMID: 26998334 PMCID: PMC4785985 DOI: 10.1098/rsos.150633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 05/31/2023]
Abstract
The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.
Collapse
Affiliation(s)
- Daniel Bengtsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar 391 82, Sweden
| | - Kamran Safi
- Deparment of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alexis Avril
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar 391 82, Sweden
| | - Wolfgang Fiedler
- Deparment of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Martin Wikelski
- Deparment of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Gunnar Gunnarsson
- Division of Natural Sciences, Kristianstad University, Kristianstad 291 88, Sweden
| | - Johan Elmberg
- Division of Natural Sciences, Kristianstad University, Kristianstad 291 88, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar 391 82, Sweden
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala 751 85, Sweden
- Zoonosis Science Centre IMBIM, Uppsala University, Uppsala 751 23, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar 391 82, Sweden
| |
Collapse
|
26
|
Edson D, Field H, McMichael L, Vidgen M, Goldspink L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Davis R, Kung N, Jordan D, Kirkland P, Smith C. Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk. PLoS One 2015; 10:e0140670. [PMID: 26469523 PMCID: PMC4607162 DOI: 10.1371/journal.pone.0140670] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.
Collapse
Affiliation(s)
- Daniel Edson
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- * E-mail:
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
| | - Lee McMichael
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Miranda Vidgen
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Lauren Goldspink
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Alice Broos
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Deb Melville
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Joanna Kristoffersen
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Carol de Jong
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Amanda McLaughlin
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - Rodney Davis
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Nina Kung
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - David Jordan
- Wollongbar Primary Industries Institute, New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Craig Smith
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| |
Collapse
|
27
|
van Dijk JGB, Kleyheeg E, Soons MB, Nolet BA, Fouchier RAM, Klaassen M. Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard
Anas platyrhynchos. OIKOS 2015. [DOI: 10.1111/oik.01836] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jacintha G. B. van Dijk
- Dept of Animal Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
| | - Erik Kleyheeg
- Inst. of Environmental Biology, Utrecht Univ. Padualaan 8 NL‐3584 CH Utrecht the Netherlands
| | - Merel B. Soons
- Dept of Animal Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
- Inst. of Environmental Biology, Utrecht Univ. Padualaan 8 NL‐3584 CH Utrecht the Netherlands
| | - Bart A. Nolet
- Dept of Animal Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
| | - Ron A. M. Fouchier
- Dept of Viroscience Erasmus MC PO Box 2040, NL‐3000 CA Rotterdam the Netherlands
| | - Marcel Klaassen
- Dept of Animal Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Droevendaalsesteeg 10 NL‐6708 PB Wageningen the Netherlands
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin Univ. Locked Bag 20000 Geelong VIC 3220 Australia
| |
Collapse
|