1
|
Musser G, Clarke JA. A new Paleogene fossil and a new dataset for waterfowl (Aves: Anseriformes) clarify phylogeny, ecological evolution, and avian evolution at the K-Pg Boundary. PLoS One 2024; 19:e0278737. [PMID: 39078833 PMCID: PMC11288464 DOI: 10.1371/journal.pone.0278737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2024] [Indexed: 08/02/2024] Open
Abstract
Despite making up one of the most ecologically diverse groups of living birds, comprising soaring, diving and giant flightless taxa, the evolutionary relationships and ecological evolution of Anseriformes (waterfowl) remain unresolved. Although Anseriformes have a comparatively rich, global Cretaceous and Paleogene fossil record, morphological datasets for this group that include extinct taxa report conflicting relationships for all known extinct taxa. Correct placement of extinct taxa is necessary to understand whether ancestral anseriform feeding ecology was more terrestrial or one of a set of diverse aquatic ecologies and to better understand avian evolution around the K-T boundary. Here, we present a new morphological dataset for Anseriformes that includes more extant and extinct taxa than any previous anseriform-focused dataset and describe a new anseriform species from the early Eocene Green River Formation of North America. The new taxon has a mediolaterally narrow bill which is rarely found in previously described anseriform fossils. The matrix created to assess the placement of this taxon comprises 41 taxa and 719 discrete morphological characters describing skeletal morphology, musculature, syringeal morphology, ecology, and behavior. We additionally combine the morphological dataset with published sequences using Bayesian methods and perform ancestral state reconstruction for select morphological, ecological and behavioral characters. We recover the new Eocene taxon as the sister taxon to (Anseranatidae+Anatidae) across all analyses, and find that the new taxon represents a novel ecology within known Anseriformes and the Green River taxa. Results provide insight into avian evolution during and following the K-Pg mass extinction and indicate that Anseriformes were likely ancestrally aquatic herbivores with rhamphothecal lamellae..
Collapse
Affiliation(s)
- Grace Musser
- Department of Vertebrate Zoology, Division of Birds, The Smithsonian National Museum of Natural History, Washington, District of Columbia, United States of America
- Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Julia A. Clarke
- Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Ponstein J, MacDougall MJ, Fröbisch J. A comprehensive phylogeny and revised taxonomy of Diadectomorpha with a discussion on the origin of tetrapod herbivory. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231566. [PMID: 39036512 PMCID: PMC11257076 DOI: 10.1098/rsos.231566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024]
Abstract
Among terrestrial tetrapods, the origin of herbivory marked a key evolutionary event that allowed for the evolution of modern terrestrial ecosystems. A 100 Ma gap separates the oldest terrestrial tetrapods and the first undisputed herbivorous tetrapods. While four clades of early tetrapod herbivores are undisputed amniotes, the phylogenetic position of Diadectomorpha with respect to Amniota has long been controversial. Given that the origin of herbivory coincides with the oldest amniotes, and obligate herbivory is unknown within amphibians, this suggests that a key adaptation necessary to evolve obligate herbivory is unique to amniotes. Historically, phylogenetic analyses have found Diadectomorpha as the sister-group to amniotes, but recent analyses recover Diadectomorpha as sister-group to Synapsida, within Amniota. We tested whether diadectomorphs are amniotes by updating the most recent character-taxon matrix. Specifically, we added new characters from the lower jaw and added diadectomorph taxa, resulting in a dataset of 341 characters and 61 operational taxonomic units. We updated the description of five diadectomorph jaws using microcomputed tomography data. Our majority-rule consensus places Diadectomorpha as sister-group to Synapsida; other methods do not recover this relationship. We revise diadectomorph taxonomy, erecting a new species from the early Permian Bromacker locality, Germany, and a new genus to accommodate 'Diadectes' sanmiguelensis.
Collapse
Affiliation(s)
- Jasper Ponstein
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
- Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, The Netherlands
| | | | - Jörg Fröbisch
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
3
|
Tse YT, Miller CV, Pittman M. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol Evol 2024; 24:39. [PMID: 38622512 PMCID: PMC11020771 DOI: 10.1186/s12862-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.
Collapse
Affiliation(s)
- Yuen Ting Tse
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Picasso MBJ, Mosto C, Tudisca AM. The feeding apparatus of Rhea americana (Aves, Palaeognathae): Jaw myology and ontogenetic allometry. J Morphol 2023; 284:e21596. [PMID: 37313766 DOI: 10.1002/jmor.21596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
In birds, the jaw musculature is a crucial adaptive feature involved in feeding. The morphological traits and postnatal growth patterns of jaw muscles constitute a useful proxy to interpret feeding function and ecology. This study aims to describe the jaw muscles of Rhea americana and explore their postnatal growth pattern. A total of 20 specimens of R. americana representing four ontogenetic stages were studied. Jaw muscles were described, weighed and their proportions with respect to body mass were calculated. Linear regression analysis was used to characterize ontogenetic scaling patterns. The morphological patterns of jaw muscles were characterized by their simplicity: bellies with few or no subdivisions and similar to those described for other flightless paleognathous birds. In all stages, the muscles pterygoideus lateralis, depressor mandibulae, and pseudotemporalis had the greatest mass values. The proportion of total jaw muscle mass decreased with age from 0.22% in 1-month-old chicks to 0.05% in adults. Linear regression analysis showed that all muscles scaled with negative allometry with respect to body mass. The progressive decrease of jaw muscle mass relative to body mass in adults could be related to the generation of less force, which is in accordance with the herbivorous diet of adults. In contrast, the diet of rhea chicks includes a large proportion of insects thus, this greater muscle proportion could be associated with the ability to generate more force, thus providing better abilities to grasp and hold more mobile prey.
Collapse
Affiliation(s)
- Mariana B J Picasso
- División Zoología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
- CONICET- División Zoología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Clelia Mosto
- División Zoología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
- CONICET- División Zoología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Alejandro M Tudisca
- División Zoología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Maher AE, Burin G, Cox PG, Maddox TW, Maidment SCR, Cooper N, Schachner ER, Bates KT. Body size, shape and ecology in tetrapods. Nat Commun 2022; 13:4340. [PMID: 35896591 PMCID: PMC9329317 DOI: 10.1038/s41467-022-32028-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods. Here, the authors examine how body size, shape, and segment proportions correspond to ecology in models of 410 tetrapods. They find variable allometric relationships, differential scaling in small and large animals, and body proportions as a potential niche occupation mechanism.
Collapse
Affiliation(s)
- Alice E Maher
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gustavo Burin
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Philip G Cox
- Department of Archaeology and Hull York Medical School, University of York, PalaeoHub, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Thomas W Maddox
- School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Small Animal Teaching Hospital, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Natalie Cooper
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
7
|
Rozenfeld SB, Sheremetyev IS. A Comparative Analysis of the Reindeer (Rangifer tarandus), the Greater White-Fronted Goose (Anser albifrons), and the Brant Goose (Branta bernicla) Diets on Belyi and Shokalskii Islands (Yamalo-Nenets Autonomous Okrug). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021070268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
|
9
|
Barbero S, Teta P, Cassini GH. A comprehensive review of dietary strategies of sigmodontine rodents of central-eastern Argentina: linking diet, body mass, and stomach morphology. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on dietary ecology plays a key role in a wide array of biological research and conservation decisions, but its availability is biased towards large and charismatic taxa, whereas small mammals are underrepresented. Of the scarce publications on the Neotropical sigmodontine rodents, most are concentrated in central-eastern Argentina and, up until now, no revision of the totality of these data has been made available. In this work, we performed a thorough review of the dietary information from over 50 publications on 22 species, finding omissions and errors propagated up to the present time. This resulted in a robust database, the proposal of a posteriori dietary categories, and a list of the species that have been neglected in feeding ecology research. In turn, we used that database to test whether the patterns which associate diet and morphology in medium-sized and large mammals could be replicated in these small rodents, despite their overall generalist habits and the restrictions characteristic to their size. We found that larger species tend towards a low-protein diet. Additionally, we identified some stomach types that are restricted to specific diets. These results are consistent with the observations for larger species and shed light on the biology of small mammals.
Collapse
Affiliation(s)
- Sofía Barbero
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Teta
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo H. Cassini
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución s/n, Luján (6700), Buenos Aires, Argentina
| |
Collapse
|
10
|
Romano M, Manucci F, Rubidge B, Van den Brandt MJ. Volumetric Body Mass Estimate and in vivo Reconstruction of the Russian Pareiasaur Scutosaurus karpinskii. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.692035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pareiasaurs (Amniota, Parareptilia) were characterized by a global distribution during the Permian period, forming an important component of middle (Capitanian) and late Permian (Lopingian) terrestrial tetrapod biodiversity. This clade represents an early evolution of sizes over a ton, playing a fundamental role in the structure of middle and late Permian biodiversity and ecosystems. Despite their important ecological role and relative abundance around the world, our general knowledge of the biology of these extinct tetrapods is still quite limited. In this contribution we provide a possible in vivo reconstruction of the largest individual of the species Scutosaurus karpinskii and a volumetric body mass estimate for the taxon, considering that body size is one of the most important biological aspects of organisms. The body mass of Scutosaurus was calculated using a 3D photogrammetric model of the complete mounted skeleton PIN 2005/1537 from the Sokolki locality, Arkhangelsk Region, Russia, on exhibit at the Borissiak Paleontological Institute, Russian Academy of Sciences (Moscow). By applying three different densities for living tissues of 0.99, 1, and 1.15 kg/1,000 cm3 to reconstructed “slim,” “average” and “fat” 3D models we obtain average body masses, respectively, of 1,060, 1,160, and 1,330 kg, with a total range varying from a minimum of one ton to a maximum of 1.46 tons. Choosing the average model as the most plausible reconstruction and close to the natural condition, we consider a body mass estimate of 1,160 kg as the most robust value for Scutosaurus, a value compatible with that of a large terrestrial adult black rhino and domestic cow. This contribution demonstrates that barrel-shaped herbivores, subsisting on a high-fiber diet and with a body mass exceeding a ton, had already evolved in the upper Palaeozoic among parareptiles, shedding new light on the structure of the first modern terrestrial ecosystems.
Collapse
|
11
|
Sheremetev IS, Rosenfeld SB, Baranyuk VV. Herbivore Diet Selectivity and Its Influence over Ecosystem Recycling in Wrangel Island. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pequeno PACL, Graça MB, Oliveira JR, Šobotník J, Acioli ANS. Can shifts in metabolic scaling predict coevolution between diet quality and body size? Evolution 2020; 75:141-148. [PMID: 33196103 DOI: 10.1111/evo.14128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.
Collapse
Affiliation(s)
- Pedro A C L Pequeno
- Roraima Research Nucleus, National Institute for Amazonia Research, R. Cel. Pinto, 315, Centro, Boa Vista - RR, CEP:, 69301-150, Brazil
| | - Márlon B Graça
- Federal Institute for Education, Science and Technology of Amazonas, Estr. Coari Itapeua, s/n - Itamarati, Coari - AM, CEP:, 69460-000, Brazil
| | - João R Oliveira
- Entomology Program, National Institute for Amazonia Research, Av. André Araújo, 2.936, Petrópolis, Manaus - AM, CEP: 69067-375, Brazil
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Agno N S Acioli
- Faculty of Agrarian Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus - AM, CEP: 69067-005, Brazil
| |
Collapse
|
13
|
Morelli F, Benedetti Y, Pape Møller A. Diet specialization and brood parasitism in cuckoo species. Ecol Evol 2020; 10:5097-5105. [PMID: 32551085 PMCID: PMC7297776 DOI: 10.1002/ece3.6263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 11/07/2022] Open
Abstract
Brood parasitism is a breeding strategy adopted by many species of cuckoos across the world. This breeding strategy influences the evolution of life histories of brood parasite species.In this study, we tested whether the degree on diet specialization is related to the breeding strategy in cuckoo species, by comparing brood parasite and nonparasite species. We measured the gradient of diet specialization of cuckoos, by calculating the Gini coefficient, an index of inequality, on the multiple traits describing the diet of species. The Gini coefficient is a measure of statistical dispersion on a scale between 0 and 1, reflecting a gradient from low to high specialization, respectively. First, we tested the strength of the phylogenetic signal of diet specialization index among cuckoo species worldwide. Then, we ran phylogenetic generalized least square (PGLS) models to compare diet specialization, distribution range, and body mass of parasitic and nonparasitic cuckoo species, considering the phylogenetic signal of data.After adjusting for the phylogenetic signal of the data and considering both, species distribution range and species body mass, brood parasitic cuckoos were characterized by higher diet specialization than nonbrood parasitic species. Brood parasitic species were also characterized by a larger breeding distribution range than nonparasitic species.The findings of this study provide an additional understanding of the cuckoos' ecology, relating diet and breeding strategies, information that could be important in conservation ecology.
Collapse
Affiliation(s)
- Federico Morelli
- Faculty of Environmental SciencesDepartment of Applied Geoinformatics and Spatial PlanningCzech University of Life Sciences PragueCzech Republic
- Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland
| | - Yanina Benedetti
- Faculty of Environmental SciencesDepartment of Applied Geoinformatics and Spatial PlanningCzech University of Life Sciences PragueCzech Republic
| | - Anders Pape Møller
- Ecologie Systématique EvolutionUniversité Paris‐SudCNRSUniversité SaclayOrsay CedexFrance
| |
Collapse
|
14
|
Downs CT, Bredin IP, Wragg PD. More than eating dirt: a review of avian geophagy. AFRICAN ZOOLOGY 2019. [DOI: 10.1080/15627020.2019.1570335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Colleen T Downs
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Ian P Bredin
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Peter D Wragg
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Forest Resources, University of Minnesota, Saint Paul, Minnesota, United States
| |
Collapse
|
15
|
Gordon IJ, Prins HHT, Mallon J, Puk LD, Miranda EBP, Starling-Manne C, van der Wal R, Moore B, Foley W, Lush L, Maestri R, Matsuda I, Clauss M. The Ecology of Browsing and Grazing in Other Vertebrate Taxa. THE ECOLOGY OF BROWSING AND GRAZING II 2019. [DOI: 10.1007/978-3-030-25865-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Rico-Guevara A, Sustaita D, Gussekloo S, Olsen A, Bright J, Corbin C, Dudley R. Feeding in Birds: Thriving in Terrestrial, Aquatic, and Aerial Niches. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Wang W, Zheng S, Li L, Yang Y, Liu Y, Wang A, Sharshov K, Li Y. Comparative metagenomics of the gut microbiota in wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea). Microbiologyopen 2018; 8:e00725. [PMID: 30296008 PMCID: PMC6528571 DOI: 10.1002/mbo3.725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Gut microbiome contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of immune system. Wild greylag geese (Anser anser) and ruddy shelducks (Tadorna ferruginea), migrating along the central Asian flyway, appear to be one of the most popular species in the rare birds rearing industries of China. However, the structure and function of the gut microbial communities associated with these two bird species remain poorly understood. Here, for the first time, we compared gut metagenomes from greylag geese to ruddy shelducks and investigated the similarities and differences between these two bird species in detail. Taxonomic classifications revealed the top three bacterial phyla, Firmicutes, Proteobacteria, and Fusobacteria, in both greylag geese and ruddy shelducks. Furthermore, between the two species, 12 bacterial genera were found to be more abundant in ruddy shelducks and 41 genera were significantly higher in greylag geese. A total of 613 genera (approximately 70%) were found to be present in both groups. Metabolic categories related to carbohydrate metabolism, metabolism of cofactors and vitamins, lipid metabolism, amino acid metabolism, and glycan biosynthesis and metabolism were significantly more abundant in ruddy shelducks, while greylag geese were enriched in nucleotide metabolism and energy metabolism. The herbivorous greylag geese gut microbiota harbored more carbohydrate‐active enzymes than omnivorous ruddy shelducks. In our study, a range of antibiotic resistance categories were also identified in the gut microbiota of greylag geese and ruddy shelducks. In addition to providing a better understanding of the composition and function of wild birds gut microbiome, this comparative study provides reference values of the artificial domestication of these birds.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Sisi Zheng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Laixing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yongsheng Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, Qinghai, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Aizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, Russia
| | - Yao Li
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, Qinghai, China
| |
Collapse
|
18
|
Wu Y, Yang Y, Cao L, Yin H, Xu M, Wang Z, Liu Y, Wang X, Deng Y. Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Sci Rep 2018; 8:13314. [PMID: 30190564 PMCID: PMC6127342 DOI: 10.1038/s41598-018-31731-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
The gut microbime plays an important role in the health of wild animals. This microbial community could be altered by habitat pollution and other human activities that threaten the host organisms. Here, we satellite-tracked a flock of swan geese (Anser cygnoides) migrating from their breeding area (Khukh Lake, Mongolia), with low levels of human activity, to their wintering area (Poyang Lake, China) which has been heavily impacted by human activities. Twenty fecal samples were collected from each site. High-throughput sequencing of 16S and ITS was employed to explore bacterial and fungal composition and diversity of their gut microbiome. Although general composition, alpha-diversity, functional prediction, and the central taxa in the phylogenetic networks showed some similarities between the two habitats, significant divergences were detected in terms of beta-diversity, species abundances, and interaction network topologies. In addition, disease-related and xenobiotic biodegradation pathways, and pathogenic bacteria were significantly increased in bacterial communities from samples at Poyang Lake. Our results reveal that the gut microbiome of swan geese, while somewhat altered after long-distance migration, still maintained a core group of species. We also show that habitat environmental stress could impact these gut microbial communities, suggesting that habitat pollution could indirectly threaten wild animals by altering their gut microbiome.
Collapse
Affiliation(s)
- Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhan Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lei Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangying Liu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Buckner JC, Ellingson R, Gold DA, Jones TL, Jacobs DK. Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck. Mol Phylogenet Evol 2018; 122:102-109. [DOI: 10.1016/j.ympev.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
|
20
|
Kollars NM, Henry AK, Whalen MA, Boyer KE, Cusson M, Eklöf JS, Hereu CM, Jorgensen P, Kiriakopolos SL, Reynolds PL, Tomas F, Turner MS, Ruesink JL. Meta-Analysis of Reciprocal Linkages between Temperate Seagrasses and Waterfowl with Implications for Conservation. FRONTIERS IN PLANT SCIENCE 2017; 8:2119. [PMID: 29312384 PMCID: PMC5744074 DOI: 10.3389/fpls.2017.02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Multi-trophic conservation and management strategies may be necessary if reciprocal linkages between primary producers and their consumers are strong. While herbivory on aquatic plants is well-studied, direct top-down control of seagrass populations has received comparatively little attention, particularly in temperate regions. Herein, we used qualitative and meta-analytic approaches to assess the scope and consequences of avian (primarily waterfowl) herbivory on temperate seagrasses of the genus Zostera. Meta-analyses revealed widespread evidence of spatio-temporal correlations between Zostera and waterfowl abundances as well as strong top-down effects of grazing on Zostera. We also documented the identity and diversity of avian species reported to consume Zostera and qualitatively assessed their potential to exert top-down control. Our results demonstrate that Zostera and their avian herbivores are ecologically linked and we suggest that bird herbivory may influence the spatial structure, composition, and functioning of the seagrass ecosystem. Therefore, the consequences of avian herbivory should be considered in the management of seagrass populations. Of particular concern are instances of seagrass overgrazing by waterfowl which result in long-term reductions in seagrass biomass or coverage, with subsequent impacts on local populations of waterfowl and other seagrass-affiliated species. While our results showed that bird density and type may affect the magnitude of the top-down effects of avian herbivory, empirical research on the strength, context-dependency, and indirect effects of waterfowl-Zostera interactions remains limited. For example, increased efforts that explicitly measure the effects of different functional groups of birds on seagrass abundance and/or document how climate change-driven shifts in waterfowl migratory patterns impact seagrass phenology and population structure will advance research programs for both ecologists and managers concerned with the joint conservation of both seagrasses and their avian herbivores.
Collapse
Affiliation(s)
- Nicole M. Kollars
- Center for Population Biology, University of California, Davis, Davis, CA, United States
| | - Amy K. Henry
- Committee on Evolutionary Biology, The University of Chicago, Chicago, IL, United States
| | - Matthew A. Whalen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
- Hakai Institute, Vancouver, BC, Canada
| | - Katharyn E. Boyer
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA, United States
| | - Mathieu Cusson
- Département des Sciences Fondamentales & Québec-Océan, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Clara M. Hereu
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Stephanie L. Kiriakopolos
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA, United States
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States
| | - Pamela L. Reynolds
- Data Science Initiative, University of California, Davis, Davis, CA, United States
| | - Fiona Tomas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States
- Instituto Mediterráneo de Estudios Avanzados, Universitat de les Illes Balears – Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Mo S. Turner
- Department of Biology, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
21
|
Abstract
About half of the world's animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence.
Collapse
|
22
|
Affiliation(s)
- Aaron M. Olsen
- Department of Organismal Biology and Anatomy University of Chicago Chicago IL USA
- Bird Division The Field Museum of Natural History Chicago IL USA
| |
Collapse
|
23
|
Brocklehurst N, Brink KS. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Body size is one of the most important characteristics of an organism, impacting a great variety of ecological characteristics. The influence of diet on body size has received considerable attention, with previous studies suggesting a greater tendency towards increased body size in herbivores than macro-carnivores. The earliest known herbivorous and macro-carnivorous synapsids provide an ideal case study for examining body size evolution in different dietary regimes. Sphenacomorpha contains two lineages: Edaphosauridae (some of the most abundant terrestrial herbivores in the late Carboniferous and early Permian), and Sphenacodontia (the largest and most abundant carnivores of that time). Phylogenetic comparative analyses are used to compare trait evolution in sphenacomorphs, including a Bayesian method for identifying branches along which phenotypic selection occurred. Two branches show rapid increases in body size in the late Carboniferous. The first occurred in Edaphosauridae, along the branch leading to the herbivorous members. The later shift towards larger size occurred in Sphenacodontia, producing a clade of large carnivores. It is possible that the rapid appearance of large herbivorous synapsids in the Carboniferous provided the selective pressure for carnivores to increase their size. Following these two shifts, rates of evolution in edaphosaurids slowed significantly, but the carnivorous sphenacodontians showed further increases.
Collapse
Affiliation(s)
- Neil Brocklehurst
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Kirstin S. Brink
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
24
|
Bailleul AM, Witmer LM, Holliday CM. Cranial joint histology in the mallard duck (Anas platyrhynchos): new insights on avian cranial kinesis. J Anat 2017; 230:444-460. [PMID: 27921292 PMCID: PMC5314395 DOI: 10.1111/joa.12562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 01/09/2023] Open
Abstract
The evolution of avian cranial kinesis is a phenomenon in part responsible for the remarkable diversity of avian feeding adaptations observable today. Although osteological, developmental and behavioral features of the feeding system are frequently studied, comparatively little is known about cranial joint skeletal tissue composition and morphology from a microscopic perspective. These data are key to understanding the developmental, biomechanical and evolutionary underpinnings of kinesis. Therefore, here we investigated joint microstructure in juvenile and adult mallard ducks (Anas platyrhynchos; Anseriformes). Ducks belong to a diverse clade of galloanseriform birds, have derived adaptations for herbivory and kinesis, and are model organisms in developmental biology. Thus, new insights into their cranial functional morphology will refine our understanding of avian cranial evolution. A total of five specimens (two ducklings and three adults) were histologically sampled, and two additional specimens (a duckling and an adult) were subjected to micro-computed tomographic scanning. Five intracranial joints were sampled: the jaw joint (quadrate-articular); otic joint (quadrate-squamosal); palatobasal joint (parasphenoid-pterygoid); the mandibular symphysis (dentary-dentary); and the craniofacial hinge (a complex flexion zone involving four different pairs of skeletal elements). In both the ducklings and adults, the jaw, otic and palatobasal joints are all synovial, with a synovial cavity and articular cartilage on each surface (i.e. bichondral joints) ensheathed in a fibrous capsule. The craniofacial hinge begins as an ensemble of patent sutures in the duckling, but in the adult it becomes more complex: laterally it is synovial; whereas medially, it is synostosed by a bridge of chondroid bone. We hypothesize that it is chondroid bone that provides some of the flexible properties of this joint. The heavily innervated mandibular symphysis is already fused in the ducklings and remains as such in the adult. The results of this study will serve as reference for documenting avian cranial kinesis from a microanatomical perspective. The formation of: (i) secondary articular cartilage on the membrane bones of extant birds; and (ii) their unique ability to form movable synovial joints within two or more membrane bones (i.e. within their dermatocranium) might have played a role in the origin and evolution of modern avian cranial kinesis during dinosaur evolution.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Department of Pathology and Anatomical SciencesUniversity of Missouri‐School of MedicineColumbiaMOUSA
| | - Lawrence M. Witmer
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Casey M. Holliday
- Department of Pathology and Anatomical SciencesUniversity of Missouri‐School of MedicineColumbiaMOUSA
| |
Collapse
|
25
|
Yang Y, Deng Y, Cao L. Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. Sci Rep 2016; 6:32655. [PMID: 27600170 PMCID: PMC5013396 DOI: 10.1038/srep32655] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Microorganisms in vertebrate guts have been recognized as important symbionts influencing host life. However, it remains unclear about the gut microbiota in long-distance migratory Anseriformes herbivores, which could be functionally important for these wetland-dependent animals. We collected faeces of the greater white-fronted goose (GWFG), bean goose (BG) and swan goose (SG) from Shengjin Lake (SJL) and Poyang Lake (PYL) in the Yangtze River Floodplain, China. High-throughput sequencing of 16S rRNA V4 region was employed to depict the composition and structure of geese gut microbiota during wintering period. The dominant bacterial phyla across all samples were Firmicutes, Proteobacteria and Actinobacteria, but significant variations were detected among different goose species and sampling sites, in terms of α diversity, community structures and microbial interactions. We found a significant correlation between diet and the microbial community structure in GWFG-SJL samples. These results demonstrated that host species and diet are potential drivers of goose gut microbiota assemblies. Despite these variations, functions of geese gut microbiota were similar, with great abundances of potential genes involved in nutrient metabolism. This preliminary study would be valuable for future, exhaustive investigations of geese gut microbiota and their interactions with host.
Collapse
Affiliation(s)
- Yuzhan Yang
- School of Life Sciences, University of Science and Technology of China, Huangshan Road, Hefei, 230026, China
| | - Ye Deng
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Cao
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
26
|
Kohl KD, Connelly JW, Dearing MD, Forbey JS. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol Lett 2016; 363:fnw144. [DOI: 10.1093/femsle/fnw144] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022] Open
|
27
|
De Pietri VL, Scofield RP, Zelenkov N, Boles WE, Worthy TH. The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150635. [PMID: 26998335 PMCID: PMC4785986 DOI: 10.1098/rsos.150635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/26/2016] [Indexed: 05/28/2023]
Abstract
Presbyornithids were the dominant birds in Palaeogene lacustrine assemblages, especially in the Northern Hemisphere, but are thought to have disappeared worldwide by the mid-Eocene. Now classified within Anseriformes (screamers, ducks, swans and geese), their relationships have long been obscured by their strange wader-like skeletal morphology. Reassessment of the late Oligocene South Australian material attributed to Wilaru tedfordi, long considered to be of a stone-curlew (Burhinidae, Charadriiformes), reveals that this taxon represents the first record of a presbyornithid in Australia. We also describe the larger Wilaru prideauxi sp. nov. from the early Miocene of South Australia, showing that presbyornithids survived in Australia at least until ca 22 Ma. Unlike on other continents, where presbyornithids were replaced by aquatic crown-group anatids (ducks, swans and geese), species of Wilaru lived alongside these waterfowl in Australia. The morphology of the tarsometatarsus of these species indicates that, contrary to other presbyornithids, they were predominantly terrestrial birds, which probably contributed to their long-term survival in Australia. The morphological similarity between species of Wilaru and the Eocene South American presbyornithid Telmabates antiquus supports our hypothesis of a Gondwanan radiation during the evolutionary history of the Presbyornithidae. Teviornis gobiensis from the Late Cretaceous of Mongolia is here also reassessed and confirmed as a presbyornithid. These findings underscore the temporal continuance of Australia's vertebrates and provide a new context in which the phylogeny and evolutionary history of presbyornithids can be examined.
Collapse
Affiliation(s)
- Vanesa L. De Pietri
- Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - R. Paul Scofield
- Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand
| | - Nikita Zelenkov
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Walter E. Boles
- Australian Museum, Ornithology Section, Sydney, New South Wales, Australia
| | - Trevor H. Worthy
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| |
Collapse
|
28
|
Brocklehurst N. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae. PeerJ 2016; 4:e1555. [PMID: 26793424 PMCID: PMC4715457 DOI: 10.7717/peerj.1555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022] Open
Abstract
Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived captorhinids rather than a shift in diet, but the evidence for this is circumstantial.
Collapse
Affiliation(s)
- Neil Brocklehurst
- Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde , Berlin , Germany
| |
Collapse
|
29
|
Olsen AM. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass. Ecol Evol 2015; 5:5016-32. [PMID: 26640679 PMCID: PMC4662324 DOI: 10.1002/ece3.1787] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low‐quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds.
Collapse
Affiliation(s)
- Aaron M Olsen
- Department of Organismal Biology and Anatomy University of Chicago 1027 E. 57th Street Chicago Illinois 60637 ; Bird Division The Field Museum of Natural History 1400 S. Lake Shore Drive Chicago Illinois 60605
| |
Collapse
|