1
|
Maggioni D, Schuchert P, Ostrovsky AN, Schiavo A, Hoeksema BW, Pica D, Piraino S, Arrigoni R, Seveso D, Montalbetti E, Galli P, Montano S. Systematics and character evolution of capitate hydrozoans. Cladistics 2024; 40:107-134. [PMID: 38112464 DOI: 10.1111/cla.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Capitate hydrozoans are a morphologically and ecologically diverse hydrozoan suborder, currently including about 200 species. Being grouped in two clades, Corynida and Zancleida, these hydrozoans still show a number of taxonomic uncertainties at the species, genus and family levels. Many Capitata species established symbiotic relationships with other benthic organisms, including bryozoans, other cnidarians, molluscs and poriferans, as well as with planktonic dinoflagellates for mixotrophic relationships and with bacteria for thiotrophic ectosymbioses. Our study aimed at providing an updated and comprehensive phylogeny reconstruction of the suborder, at modelling the evolution of selected morphological and ecological characters, and at testing evolutionary relationships between the symbiotic lifestyle and the other characters, by integrating taxonomic, ecological and evolutionary data. The phylogenetic hypotheses here presented shed light on the evolutionary relationships within Capitata, with most families and genera being recovered as monophyletic. The genus Zanclea and family Zancleidae, however, were divided into four divergent clades, requiring the establishment of the new genus Apatizanclea and the new combinations for species in Zanclea and Halocoryne genera. The ancestral state reconstructions revealed that symbiosis arose multiple times in the evolutionary history of the Capitata, and that homoplasy is a common phenomenon in the group. Correlations were found between the evolution of symbiosis and morphological characters, such as the perisarc. Overall, our results highlighted that the use of genetic data and a complete knowledge of the life cycles are strongly needed to disentangle taxonomic and systematic issues in capitate hydrozoans. Finally, the colonization of tropical habitat appears to have influenced the evolution of a symbiotic lifestyle, playing important roles in the evolution of the group.
Collapse
Affiliation(s)
- Davide Maggioni
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, 20126, Italy
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | | | - Andrew N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, 1090, Austria
| | - Andrea Schiavo
- Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, 20133, Italy
| | - Bert W Hoeksema
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, Leiden, 2333 CR, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara, 87071, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, 73100, Italy
- National Interuniversity Consortium for Marine Science (CoNISMa), Rome, 00196, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Davide Seveso
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
| | - Paolo Galli
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Simone Montano
- Department of Earth and Environmental Science (DISAT), University of Milano-Bicocca, Milan, 20126, Italy
- Marine Research and Higher Education (MaRHE) Center, University of Milano-Bicocca, Faafu Magoodhoo Island, 12030, Maldives
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| |
Collapse
|
2
|
van der Schoot RJ, Hoeksema BW. Host specificity of coral-associated fauna and its relevance for coral reef biodiversity. Int J Parasitol 2024; 54:65-88. [PMID: 37838302 DOI: 10.1016/j.ijpara.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Coral-associated fauna predominantly consists of invertebrates and constitutes an important component of coral reef biodiversity. The symbionts depend on their hosts for food, shelter and substrate. They may act as parasites by feeding on their hosts, by overgowing their polyps, or by excavating their skeletons. Because some of these species partly reside inside their hosts, they may be cryptic and can easily be overlooked in biodiversity surveys. Since no quantitative overview is available about these inter-specific relationships, this present study adresses variation in host ranges and specificity across four large coral-associated taxa and between the Atlantic and Indo-Pacific oceans. These taxa are: coral barnacles (Pyrgomatidae, n = 95), coral gall crabs (Cryptochiridae, n = 54), tubeworms (Serpulidae, n = 31), and date mussels (Lithophaginae, n = 23). A total of 335 host coral species was recorded. An index of host specificity (STD) was calculated per symbiont species, based on distinctness in taxonomic host range levels (species, genus, family, etc.). Mean indices were statistically compared among the four associated taxa and the two oceanic coral reef regions. Barnacles were the most host-specific, tubeworms the least. Indo-Pacific associates were approximately 10 times richer in species and two times more host-specific than their Atlantic counterparts. Coral families varied in the number of associates, with some hosting none. This variation could be linked to host traits (coral growth form, maximum host size) and is most probably also a result of the evolutionary history of the interspecific relationships.
Collapse
Affiliation(s)
- Roeland J van der Schoot
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| | - Bert W Hoeksema
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands.
| |
Collapse
|
3
|
Morphological Modifications and Injuries of Corals Caused by Symbiotic Feather Duster Worms (Sabellidae) in the Caribbean. DIVERSITY 2022. [DOI: 10.3390/d14050332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some coral-associated invertebrates are known for the negative impact they have on the health of their hosts. During biodiversity surveys on the coral reefs of Curaçao and a study of photo archives of Curaçao, Bonaire, and St. Eustatius, the Caribbean split-crown feather duster worm Anamobaea sp. (Sabellidae) was discovered as an associate of 27 stony coral species (Scleractinia spp. and Millepora spp.). The worm was also found in association with an encrusting octocoral (Erythropodium caribaeorum), a colonial tunicate (Trididemnum solidum), various sponge species, and thallose algae (mainly Lobophora sp.), each hypothesized to be secondary hosts. The worms were also common on dead coral. Sabellids of the genera Bispira and Sabellastarte were all found on dead coral. Some of them appeared to have settled next to live corals or on patches of dead coral skeleton surrounded by living coral tissue, forming pseudo-associations. Associated Anamobaea worms can cause distinct injuries in most host coral species and morphological deformities in a few of them. Since Anamobaea worms can form high densities, they have the potential to become a pest species on Caribbean coral reefs when environmental conditions become more favorable for them.
Collapse
|
4
|
The scleractinian Agaricia undata as a new host for the coral-gall crab Opecarcinus hypostegus at Bonaire, southern Caribbean. Symbiosis 2020. [DOI: 10.1007/s13199-020-00706-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe Caribbean scleractinian reef coral Agaricia undata (Agariciidae) is recorded for the first time as a host of the coral-gall crab Opecarcinus hypostegus (Cryptochiridae). The identity of the crab was confirmed with the help of DNA barcoding. The association has been documented with photographs taken in situ at 25 m depth and in the laboratory. The predominantly mesophotic depth range of the host species suggests this association to be present also at greater depths. With this record, all seven Agaricia species are now listed as gall-crab hosts, together with the agariciid Helioseris cucullata. Within the phylogeny of Agariciidae, Helioseris is not closely related to Agaricia. Therefore, the association between Caribbean agariciids and their gall-crab symbionts may either have originated early in their shared evolutionary history or later as a result of host range expansion. New information on coral-associated fauna, such as what is presented here, leads to a better insight on the diversity, evolution, and ecology of coral reef biota, particularly in the Caribbean, where cryptochirids have rarely been studied.
Collapse
|
5
|
Host-related Morphological Variation of Dwellings Inhabited by the Crab Domecia acanthophora in the Corals Acropora palmata and Millepora complanata (Southern Caribbean). DIVERSITY 2020. [DOI: 10.3390/d12040143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brachyuran crabs of various families are known as obligate associates of stony corals, with many of these species living as endosymbionts inside the skeleton of their hosts [...]
Collapse
|
6
|
Wolfe JM, Breinholt JW, Crandall KA, Lemmon AR, Lemmon EM, Timm LE, Siddall ME, Bracken-Grissom HD. A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans. Proc Biol Sci 2020; 286:20190079. [PMID: 31014217 DOI: 10.1098/rspb.2019.0079] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comprising over 15 000 living species, decapods (crabs, shrimp and lobsters) are the most instantly recognizable crustaceans, representing a considerable global food source. Although decapod systematics have received much study, limitations of morphological and Sanger sequence data have yet to produce a consensus for higher-level relationships. Here, we introduce a new anchored hybrid enrichment kit for decapod phylogenetics designed from genomic and transcriptomic sequences that we used to capture new high-throughput sequence data from 94 species, including 58 of 179 extant decapod families, and 11 of 12 major lineages. The enrichment kit yields 410 loci (greater than 86 000 bp) conserved across all lineages of Decapoda, more clade-specific molecular data than any prior study. Phylogenomic analyses recover a robust decapod tree of life strongly supporting the monophyly of all infraorders, and monophyly of each of the reptant, 'lobster' and 'crab' groups, with some results supporting pleocyemate monophyly. We show that crown decapods diverged in the Late Ordovician and most crown lineages diverged in the Triassic-Jurassic, highlighting a cryptic Palaeozoic history, and post-extinction diversification. New insights into decapod relationships provide a phylogenomic window into morphology and behaviour, and a basis to rapidly and cheaply expand sampling in this economically and ecologically significant invertebrate clade.
Collapse
Affiliation(s)
- Joanna M Wolfe
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA.,2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA.,3 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
| | - Jesse W Breinholt
- 4 Florida Museum of Natural History, University of Florida , Gainesville, FL 32611 , USA.,5 RAPiD Genomics , Gainesville, FL 32601 , USA
| | - Keith A Crandall
- 6 Computational Biology Institute, The George Washington University , Ashburn, VA 20147 , USA.,7 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC 20012 , USA
| | - Alan R Lemmon
- 8 Department of Scientific Computing, Florida State University , Dirac Science Library, Tallahassee, FL 32306 , USA
| | - Emily Moriarty Lemmon
- 9 Department of Biological Science, Florida State University , Tallahassee, FL 32306 , USA
| | - Laura E Timm
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| | - Mark E Siddall
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA
| | - Heather D Bracken-Grissom
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| |
Collapse
|
7
|
Manca F, Puce S, Caragnano A, Maggioni D, Pica D, Seveso D, Galli P, Montano S. Symbiont footprints highlight the diversity of scleractinian‐associated
Zanclea
hydrozoans (Cnidaria, Hydrozoa). ZOOL SCR 2019. [DOI: 10.1111/zsc.12345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Federica Manca
- Department of Life and Environmental Sciences Università Politecnica delle Marche Ancona Italy
| | - Stefania Puce
- Department of Life and Environmental Sciences Università Politecnica delle Marche Ancona Italy
| | - Annalisa Caragnano
- Department of Life and Environmental Sciences Università Politecnica delle Marche Ancona Italy
| | - Davide Maggioni
- Department of Earth and Environmental Sciences (DISAT) University of Milano-Bicocca Milan Italy
- Marine Research and High Education Center (MaRHE Center) Magoodhoo Island Faafu Atoll Republic of Maldives
| | - Daniela Pica
- Department of Life and Environmental Sciences Università Politecnica delle Marche Ancona Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT) University of Milano-Bicocca Milan Italy
- Marine Research and High Education Center (MaRHE Center) Magoodhoo Island Faafu Atoll Republic of Maldives
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT) University of Milano-Bicocca Milan Italy
- Marine Research and High Education Center (MaRHE Center) Magoodhoo Island Faafu Atoll Republic of Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano-Bicocca Milan Italy
- Marine Research and High Education Center (MaRHE Center) Magoodhoo Island Faafu Atoll Republic of Maldives
| |
Collapse
|
8
|
Montano S, Fattorini S, Parravicini V, Berumen ML, Galli P, Maggioni D, Arrigoni R, Seveso D, Strona G. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease. Proc Biol Sci 2018; 284:rspb.2017.2405. [PMID: 29263277 DOI: 10.1098/rspb.2017.2405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.
Collapse
Affiliation(s)
- Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy.,MaRHE Center (Marine Research and High Education Center), Magoodhoo Island Faafu Atoll, Republic of Maldives
| | - Simone Fattorini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.,CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
| | - Valeriano Parravicini
- CRIOBE, USR 3278 CNRS-EPHE-UPVD, LABEX Corail, University of Perpignan, 66860 Perpignan, France.,IRD UMR 9190 MARBEC, IRD-CNRS-IFREMER-UM, Université de Montpellier, Montpellier 34095, France
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy.,MaRHE Center (Marine Research and High Education Center), Magoodhoo Island Faafu Atoll, Republic of Maldives
| | - Davide Maggioni
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy.,MaRHE Center (Marine Research and High Education Center), Magoodhoo Island Faafu Atoll, Republic of Maldives
| | - Roberto Arrigoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy.,MaRHE Center (Marine Research and High Education Center), Magoodhoo Island Faafu Atoll, Republic of Maldives
| | - Giovanni Strona
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Bio-Economy Unit, Via Enrico Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
9
|
Ivanenko VN, Hoeksema BW, Mudrova SV, Nikitin MA, Martínez A, Rimskaya-Korsakova NN, Berumen ML, Fontaneto D. Lack of host specificity of copepod crustaceans associated with mushroom corals in the Red Sea. Mol Phylogenet Evol 2018; 127:770-780. [PMID: 29908997 DOI: 10.1016/j.ympev.2018.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
The radiation of symbiotic copepods (Crustacea: Copepoda) living in association with stony corals (Cnidaria: Scleractinia) is considered host-specific and linked to the phylogenetic diversification of their hosts. However, symbiotic copepods are poorly investigated, occurrence records are mostly anecdotal, and no explicit analysis exists regarding their relationship with the hosts. Here, we analysed the occurrence of symbiotic copepods on different co-occurring and phylogenetically closely related scleractinian corals. We used an innovative approach of DNA extraction from single microscopic specimens that preserves the shape of the organisms for integrative morphological studies. The rationale of the study involved: (i) sampling of mushroom corals (Fungiidae) belonging to 13 species and eight genera on different reefs along the Saudi coastline in the Red Sea, (ii) extraction of all the associated copepods, (iii) morphological screening and identification of copepod species, (iv) use of DNA taxonomy on mitochondrial and nuclear markers to determine species boundaries for morphologically unknown copepod species, (v) reconstruction of phylogenies to understand their evolutionary relationships, and (vi) analysis of the ecological drivers of the occurrence, diversity and host specificity of the copepods. The seven species of coral-associated copepods, all new to science, did not show any statistically significant evidence of host-specificity or other pattern of ecological association. We thus suggest that, contrary to most assumptions and previous anecdotal evidence on this coral-copepod host-symbiont system, the association between copepods and their host corals is rather labile, not strict, and not phylogenetically constrained, changing our perception on evolutionary patterns and processes in symbiotic copepods.
Collapse
Affiliation(s)
- Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119992, Russia.
| | - Bert W Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Sofya V Mudrova
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mikhail A Nikitin
- A.N. Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alejandro Martínez
- National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Nadezda N Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119992, Russia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Diego Fontaneto
- National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
10
|
Boyko CB, van Der Meij SET. A trifecta of Swiftian symbioses: stony corals, gall crabs and their parasites (Scleractinia; Brachyura: Cryptochiridae; Isopoda: Epicaridea and Cirripedia: Rhizocephala). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zlx115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christopher B Boyko
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY, USA
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Sancia E T van Der Meij
- Oxford University Museum of Natural History, Parks Road, Oxford, UK
- Linacre College, University of Oxford, Oxford, UK
- Naturalis Biodiversity Center, RA Leiden, the Netherlands
| |
Collapse
|
11
|
|