1
|
Lv B, Guo Y, Zhao X, Li S, Sun M. Glucose-6-phosphate 1-Epimerase CrGlu6 Contributes to Development and Biocontrol Efficiency in Clonostachys chloroleuca. J Fungi (Basel) 2023; 9:764. [PMID: 37504752 PMCID: PMC10381721 DOI: 10.3390/jof9070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Clonostachys chloroleuca (formerly classified as C. rosea) is an important mycoparasite active against various plant fungal pathogens. Mitogen-activated protein kinase (MAPK) signaling pathways are vital in mycoparasitic interactions; they participate in responses to diverse stresses and mediate fungal development. In previous studies, the MAPK-encoding gene Crmapk has been proven to be involved in mycoparasitism and the biocontrol processes of C. chloroleuca, but its regulatory mechanisms remain unclear. Aldose 1-epimerases are key enzymes in filamentous fungi that generate energy for fungal growth and development. By protein-protein interaction assays, the glucose-6-phosphate 1-epimerase CrGlu6 was found to interact with Crmapk, and expression of the CrGlu6 gene was significantly upregulated when C. chloroleuca colonized Sclerotinia sclerotiorum sclerotia. Gene deletion and complementation analyses showed that CrGlu6 deficiency caused abnormal morphology of hyphae and cells, and greatly reduced conidiation. Moreover, deletion mutants presented much lower antifungal activities and mycoparasitic ability, and control efficiency against sclerotinia stem rot was markedly decreased. When the CrGlu6 gene was reinserted, all biological characteristics and biocontrol activities were recovered. These findings provide new insight into the mechanisms of glucose-6-phosphate 1-epimerase in mycoparasitism and help to further reveal the regulation of MAPK and its interacting proteins in the biocontrol of C. chloroleuca.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Freire-Rallo S, Wedin M, Diederich P, Millanes AM. To explore strange new worlds - The diversification in Tremella caloplacae was linked to the adaptive radiation of the Teloschistaceae. Mol Phylogenet Evol 2023; 180:107680. [PMID: 36572164 DOI: 10.1016/j.ympev.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.
Collapse
Affiliation(s)
- Sandra Freire-Rallo
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| | - Mats Wedin
- Swedish Museum of Natural History/Botany Dept., PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Paul Diederich
- Musée national d'histoire naturelle, 25 rue Munster, L-2160 Luxembourg, Luxembourg
| | - Ana M Millanes
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| |
Collapse
|
3
|
Arifin AR, Phillips RD, Linde CC. Strong phylogenetic congruence between Tulasnella fungi and their associated Drakaeinae orchids. J Evol Biol 2023; 36:221-237. [PMID: 36309962 PMCID: PMC10091943 DOI: 10.1111/jeb.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1-6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae-Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae-Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Plant Pathology, Washington State University Tree Fruit Research and Extension Center, Wenatchee, Washington, USA
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia.,Department of Biodiversity, Conservation and Attractions, Kings Park Science, Perth, Western Australia, Australia.,Royal Botanic Gardens Victoria, Victoria, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Babb-Biernacki SJ, Esselstyn JA, Doyle VP. Predicting Species Boundaries and Assessing Undescribed Diversity in Pneumocystis, an Obligate Lung Symbiont. J Fungi (Basel) 2022; 8:jof8080799. [PMID: 36012788 PMCID: PMC9409666 DOI: 10.3390/jof8080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.
Collapse
Affiliation(s)
- Spenser J. Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Correspondence:
| | - Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Vinson P. Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70809, USA;
| |
Collapse
|
5
|
Liu TY, Chen CH, Yang YL, Tsai IJ, Ho YN, Chung CL. The brown root rot fungus Phellinus noxius affects microbial communities in different root-associated niches of Ficus trees. Environ Microbiol 2021; 24:276-297. [PMID: 34863027 DOI: 10.1111/1462-2920.15862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Brown root rot (BRR) caused by Phellinus noxius is a destructive tree disease in tropical and subtropical areas. To understand how BRR affects the composition of the plant rhizoplane-enriched microbiota, the microbiomes within five root-associated compartments (i.e., bulk soil, old/young root rhizosphere soil, old/young root tissue) of Ficus trees naturally infected by P. noxius were investigated. The level of P. noxius infection was determined by quantitative PCR. Illumina sequencing of the internal transcribed spacer and 16S rRNA revealed that P. noxius infection caused a significant reduction in fungal diversity in the bulk soil, the old root rhizosphere soil, and the old root tissue. Interestingly, Cosmospora was the only fungal genus positively correlated with P. noxius. The abundance and composition of dominant bacterial taxa such as Actinomadura, Bacillus, Rhodoplanes, and Streptomyces differed between BRR-diseased and healthy samples. Furthermore, 838 isolates belonging to 26 fungal and 35 bacterial genera were isolated and tested for interactions with P. noxius. Antagonistic activities were observed for isolates of Bacillus, Pseudomonas, Aspergillus, Penicillium, and Trichoderma. Cellophane overlay and cellulose/lignin utilization assays suggested that Cosmospora could tolerate the secretions of P. noxius and that the degradation of lignin by P. noxius may create suitable conditions for Cosmorpora growth.
Collapse
Affiliation(s)
- Tse-Yen Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, 10617, Taiwan.,Division of Forest Protection, Taiwan Forestry Research Institute, Taipei City, 10066, Taiwan
| | - Chao-Han Chen
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei City, 10066, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, 11529, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei City, 11529, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, 10617, Taiwan
| |
Collapse
|
6
|
van der Linden CFH, WallisDeVries MF, Simon S. Great chemistry between us: The link between plant chemical defenses and butterfly evolution. Ecol Evol 2021; 11:8595-8613. [PMID: 34257918 PMCID: PMC8258229 DOI: 10.1002/ece3.7673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Plants constantly cope with insect herbivory, which is thought to be the evolutionary driver for the immense diversity of plant chemical defenses. Herbivorous insects are in turn restricted in host choice by the presence of plant chemical defense barriers. In this study, we analyzed whether butterfly host-plant patterns are determined by the presence of shared plant chemical defenses rather than by shared plant evolutionary history. Using correlation and phylogenetic statistics, we assessed the impact of host-plant chemical defense traits on shaping northwestern European butterfly assemblages at a macroevolutionary scale. Shared chemical defenses between plant families showed stronger correlation with overlap in butterfly assemblages than phylogenetic relatedness, providing evidence that chemical defenses may determine the assemblage of butterflies per plant family rather than shared evolutionary history. Although global congruence between butterflies and host-plant families was detected across the studied herbivory interactions, cophylogenetic statistics showed varying levels of congruence between butterflies and host chemical defense traits. We attribute this to the existence of multiple antiherbivore traits across plant families and the diversity of insect herbivory associations per plant family. Our results highlight the importance of plant chemical defenses in community ecology through their influence on insect assemblages.
Collapse
Affiliation(s)
| | - Michiel F. WallisDeVries
- De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
7
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
8
|
Natural Fungicolous Regulators of Biscogniauxia destructiva sp. nov. That Causes Beech Bark Tarcrust in Southern European ( Fagus sylvatica) Forests. Microorganisms 2020; 8:microorganisms8121999. [PMID: 33333832 PMCID: PMC7765258 DOI: 10.3390/microorganisms8121999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Mycoparasites are a collection of fungicolous eukaryotic organisms that occur on and are antagonistic to a wide range of plant pathogenic fungi. To date, this fungal group has largely been neglected by biodiversity studies. However, this fungal group is of interest, as it may contain potential biocontrol agents of pathogenic fungi that cause beech Tarcrust disease (BTC), which has contributed to the devastation of European beech (Fagus sylvatica) forests. Biscogniauxia nummularia has been demonstrated to cause BTC. However, a trophic association between mycoparasites and pathogenic Biscogniauxia spp., has not been established. This study aimed to taxonomically identify and characterize Biscogniauxia, a fungus causing destructive BTC disease in European beech at Lovćen national park, Montenegro and to uncover the diversity of mycopathogens that are natural regulators of xylariaceous Biscogniauxia stroma formation, associated with beech decline. This finding is supported by distinctive phylogenetic and evolutionary characteristics, as well as unique morphological-microscopic fungal features indicating that Biscogniauxia from Montenegro, which is a major cause of BTC occurring in ancient beech forests at the edge of southern Fagus sylvatica distribution, may be described as a novel fungus specific to Fagus. Its evolutionary nuSSU–complete ITS–partial nuLSU rDNA phylogeny indicates its likely emergence by asexual fusion or introgressive hybridization between diverged B. nummularia and B. anceps species. The name Biscogniauxia destructiva is proposed for the novel fungus, as it is aggressive and highly destructive BTC disease.
Collapse
|
9
|
Nicoletti R, Di Vaio C, Cirillo C. Endophytic Fungi of Olive Tree. Microorganisms 2020; 8:E1321. [PMID: 32872625 PMCID: PMC7565531 DOI: 10.3390/microorganisms8091321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to the general interest connected with investigations on biodiversity in natural contexts, more recently the scientific community has started considering occurrence of endophytic fungi in crops in the awareness of the fundamental role played by these microorganisms on plant growth and protection. Crops such as olive tree, whose management is more and more frequently based on the paradigm of sustainable agriculture, are particularly interested in the perspective of a possible applicative employment, considering that the multi-year crop cycle implies a likely higher impact of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi associated with olive tree (Olea europaea) are revised in the present paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
10
|
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00448-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chen Z, Wang Q, Ma J, Zou P, Yu Q, Jiang L. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110453. [PMID: 32229326 DOI: 10.1016/j.ecoenv.2020.110453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Anaerobically digested slurry (ADS) has been widely used as a liquid fertilizer in agroecosystems. However, there is scant information on the effects of successive ADS applications on heavy metals (HMs) accumulation and fungal community composition in paddy soils. In this study, we conducted a field experiment over 10 years to assess the changes in soil HMs and fungal community composition under the long-term application of ADS in a paddy field. The four treatments were (1) no fertilizer (CK); (2) mineral fertilizer and 270 kg N ha-1 from urea (MF); (3) 270 kg N ha-1 from ADS (ADS1); and (4) 540 kg N ha-1 from ADS (ADS2). The results revealed that ADS application improved paddy soil fertility compared to that under the MF treatment by increasing soil organic C (SOC), total N (TN) and available potassium (AK). Long-term application of ADS significantly increased soil total and available Zn (TZn and AZn) concentrations as compared to those under the MF treatment. However, there were no significant differences in the total and available Cu concentrations or the total Pb concentration between the ADS and MF treatments. Sequence analysis showed that application of ADS increased the fungal richness indexes (Chao1 and ACE) compared to MF treatment. Principal coordinate analysis (PCoA) showed that the soil fungal community compositions were significantly separated by high levels of ADS application. Long-term application of ADS increased the relative abundance of classes Sordariomycetes, Dothideomycetes and Agaricomycetes by 20.8-29.0%, 107.3-141.4% and 289.5-387.5%, respectively, but decreased that of Pezizomycetes by 14.0-33.0% compared to that under the MF treatment. At the genus level, compared to those under the MF treatment, the relative abundances of Pyrenochaetopsis and Myrothecium were significantly increased by the application of ADS, but those of Mrakia and Tetracladium were significantly decreased. Redundancy analysis (RDA) revealed that SOC, AZn and AP were the three most important factors affecting the fungal community composition of the paddy soil. Our findings suggested that fungal community composition could be affected by changes in the chemical properties and heavy metal contents of paddy soil under high application of ADS in the long term.
Collapse
Affiliation(s)
- Zhaoming Chen
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiang Wang
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Ma
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ping Zou
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiaogang Yu
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lina Jiang
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
12
|
|
13
|
Klimov PB, Mironov SV, OConnor BM. Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds. Evolution 2017; 71:2381-2397. [DOI: 10.1111/evo.13309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Pavel B. Klimov
- Department of Ecology and Evolutionary Biology University of Michigan, Museum of Zoology Ann Arbor Michigan 48109
- Faculty of Biology Tyumen State University Tyumen 625003 Russia
| | - Sergey V. Mironov
- Faculty of Biology Tyumen State University Tyumen 625003 Russia
- Department of Parasitology, Zoological Institute Russian Academy of Sciences 1 Universitetskaya embankment Saint Petersburg 199034 Russia
| | - Barry M. OConnor
- Department of Ecology and Evolutionary Biology University of Michigan, Museum of Zoology Ann Arbor Michigan 48109
| |
Collapse
|
14
|
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. paco: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12736] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology Princeton University 106A Guyot Hall Princeton NJ 08544 USA
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - E. Fernando Cagua
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - Juan A. Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia 2 Professor José Beltrán Martínez StreetPaterna Valencia 46980 Spain
| | - Daniel B. Stouffer
- Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch New Zealand
| | - Timothée Poisot
- Department of Biological Sciences, University of Montréal Pavillon Marie‐Victorin 90 Vincent‐d’Indy Avenue Montréal QC H2V 2S9 Canada
| |
Collapse
|
15
|
Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|