1
|
Maharjan R, Hong S, Ahn J, Yoon Y, Jang Y, Kim J, Lee M, Park K, Yi H. Temperature and Host Plant Impacts on the Development of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae): Linear and Nonlinear Modeling. INSECTS 2023; 14:insects14050412. [PMID: 37233040 DOI: 10.3390/insects14050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
The tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), is one of the most serious pests in field crops, vegetables, and ornamentals. Temperatures (15, 20, 25, 27, 30, 35, and 40 °C), host plants (soybean (Glycine max (L.)), maize (Zea mays L.), groundnut (Arachis hypogaea L.) and azuki bean (Vigna angularis (Willd.) Ohwi & H. Ohashi,), and the artificial diet-dependent developmental parameters and survival of S. litura were examined in this study. Stage-specific parameters such as threshold development temperature (LDT) and thermal constant (K) (Degree day (DD)) were determined by linear and nonlinear models (Sharpe-Schoolfield-Ikemoto), respectively. The total developmental time (egg-adult) decreased with increasing temperature on host plants and with an artificial diet. The total immature developmental time varied from 106.29, 107.57, 130.40, 111.82, and 103.66 days at 15 °C to 22.47, 21.25, 25.31, 18.30, and 22.50 days at 35 °C on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. The LDT for the total immature completion was 7.50, 9.48, 11.44, 12.32, and 7.95 °C on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. The K for the total immature completion was 587.88, 536.84, 517.45, 419.44, and 586.95 DD on soybean, maize, groundnut, azuki bean, and artificial diet, respectively. Temperature and host plant interaction also influenced the longevity and survival of adults. The findings of this study can be used to predict the number of generations, spring emergence, and population dynamics of S. litura. The nutrient content analysis of the host plants is discussed in terms of the developmental patterns of S. litura.
Collapse
Affiliation(s)
- Rameswor Maharjan
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Seoyeon Hong
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Jeongjoon Ahn
- Research Institute of Climate Change and Agriculture, National Institute of Crop Science, Rural Development Administration, Jeju 63240, Republic of Korea
| | - Youngnam Yoon
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Yunwoo Jang
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Jungin Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Myounghee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Kido Park
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Hwijong Yi
- Crop Production Technology Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| |
Collapse
|
2
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Zhong H, Zhang J, Li F, Chen J. Gut microbial communities associated with phenotypically divergent populations of the striped stem borer Chilo suppressalis (Walker, 1863). Sci Rep 2021; 11:15010. [PMID: 34294783 PMCID: PMC8298391 DOI: 10.1038/s41598-021-94395-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Chilo suppressalis (Walker, 1863) is a serious stem borer of rice and water-oat plants, and has phenotypically diverged into rice and water-oat populations. Insect gut microbiota plays an important role in the host life and understanding the dynamics of this complicated ecosystem may improve its biological control. The effect of diet and gut compartments on the gut microflora of divergent populations of C. suppressalis is not fully clear. Herein, we characterized the gut microbiota of C. suppressalis populations fed on two hosts (i.e., water-oats fruit pulps and rice seedlings), by sequencing the V3-V4 hypervariable region of the 16S rRNA gene using the Illumina MiSeq platform. Gut bacterial communities showed variation in relative abundance among C. suppressalis populations fed on water-oats fruit pulps or rice seedlings. Proteobacteria and Firmicutes became the predominant phyla, and Enterobacteriaceae, Enterococcaceae and Halomonadaceae were the predominant family in all C. suppressalis populations. The highest bacteria diversity was found in the midgut of the rice population fed on water-oat fruit pulps. Bacterial communities in the midgut were more diverse than those in the hindgut. The bacterial genera distribution showed great differences due to diet types and gut compartments among populations. Our results demonstrated that the host plants tested had a considerable impact on gut bacterial composition of C. suppressalis populations. Additionly, the unique gut morphology and physiological conditions (viz., oxygen content, enzymes) also contributed to variation in microbiomes. In conclusion, our study provided an important insight into investigation of insect-bacteria symbioses, and biocontrol of this species and other related lepidopterans.
Collapse
Affiliation(s)
- Haiying Zhong
- grid.410744.20000 0000 9883 3553Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ,State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Hangzhou, 310021 China
| | - Juefeng Zhang
- grid.410744.20000 0000 9883 3553Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ,State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Hangzhou, 310021 China
| | - Fang Li
- grid.410744.20000 0000 9883 3553Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ,State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Hangzhou, 310021 China
| | - Jianming Chen
- grid.410744.20000 0000 9883 3553Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China ,State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Hangzhou, 310021 China
| |
Collapse
|
4
|
Di XY, Yan B, Wu CX, Yu XF, Liu JF, Yang MF. Does Larval Rearing Diet Lead to Premating Isolation in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae)? INSECTS 2021; 12:insects12030203. [PMID: 33673724 PMCID: PMC7997327 DOI: 10.3390/insects12030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Spodoptera litura Fabricius (Lepidoptera: Noctuidae) is a serious polyphagous pest. Most studies focus on the effects of natural hosts on S. litura. However, progressively more laboratory studies S. litura involve feeding the larvae with an artificial diet. We compared the life performance and observed mating choice of S. litura reared on tobacco, Chinese cabbage, and an artificial diet. The results revealed that diet had a significant effect on the duration of each stage of development. In the multiple-choice test with individual males consuming tobacco, Chinese cabbage, or an artificial diet, females fed on the artificial diet preferred to mate with males that were fed on the same diet and rarely mated with males fed on tobacco or Chinese cabbage. We suggest that the diet of S. litura has a potential impact on mate choice and sexual isolation. Abstract Host plant preference during the larval stage may help shape not only phenotypic plasticity but also behavioral isolation. We assessed the effects of diet on population parameters and mate choice in Spodoptera litura. We raised larvae fed on tobacco, Chinese cabbage, or an artificial diet, and we observed the shortest developmental time and highest fecundity in individuals fed the artificial diet. However, survival rates were higher for larvae on either of the natural diets. Population parameters including intrinsic rate of increase and finite rate of increase were significantly higher with the artificial diet, but this diet led to a lower mean generation time. Copulation duration, copulation time, and number of eggs reared significantly differed between diets. In terms of mate choice, females on the artificial diet rarely mated with males fed on a natural host. Our results support the hypothesis that different diets may promote behavioral isolation, affecting mating outcomes. Thus, findings for populations fed an artificial diet may not reflect findings for populations in the field.
Collapse
Affiliation(s)
- Xue-Yuan Di
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China; (X.-Y.D.); (B.Y.)
| | - Bin Yan
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China; (X.-Y.D.); (B.Y.)
| | - Cheng-Xu Wu
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Xiao-Fei Yu
- College of Tobacco Science, Guizhou University, Guiyang 550025, China;
| | - Jian-Feng Liu
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China; (X.-Y.D.); (B.Y.)
- Correspondence: (J.-F.L.); (M.-F.Y.)
| | - Mao-Fa Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang 550025, China; (X.-Y.D.); (B.Y.)
- College of Tobacco Science, Guizhou University, Guiyang 550025, China;
- Correspondence: (J.-F.L.); (M.-F.Y.)
| |
Collapse
|
5
|
Guo S, Tian Z, Quan WL, Sun D, Liu W, Wang XP. Comparative transcriptomics of the pheromone glands provides new insights into the differentiation of sex pheromone between two host populations of Chilo suppressalis. Sci Rep 2020; 10:3499. [PMID: 32103103 PMCID: PMC7044216 DOI: 10.1038/s41598-020-60529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Reproductive isolation between different host populations is often based on intraspecific sex pheromone differences. The mechanisms underlying these differences have not been thoroughly elucidated to date. Previous studies suggested that Chilo suppressalis has differentiated into rice and water-oat host populations, and these two populations manifest clear differences in sex pheromone titer and mating rhythm. Hence, this moth is an ideal model to investigate the endogenous mechanisms of intraspecific reproductive isolation. Here, we identified a series of putative genes associated with sex pheromone biosynthesis based on the C. suppressalis pheromone gland transcriptome data. Transcripts of most genes were at higher level in the rice population. Then we obtained 11 pivotal differentially expressed genes (DEGs). The expression levels of these DEGs exhibited a distinct increase in the rice population. Moreover, we also observed the expression rhythm of these DEGs is discrepant between two host populations. Our study offers a new understanding to elucidate the mechanisms of intraspecific reproductive isolation.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wei-Li Quan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dan Sun
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
6
|
Zhu L, Feng S, Gao Q, Liu W, Ma WH, Wang XP. Host population related variations in circadian clock gene sequences and expression patterns in Chilo suppressalis. Chronobiol Int 2019; 36:969-978. [PMID: 31043079 DOI: 10.1080/07420528.2019.1603158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rice stem borer, Chilo suppressalis Walker, is one of the most important global agricultural pests. C. suppressalis has distinct rice and water-oat host populations. Asynchrony in sexual activity is thought to be the main factor maintaining reproductive segregation between these populations, particularly the obvious difference in the circadian rhythm of female calling activity between populations. However, the mechanism responsible for this difference in the timing of female calling is poorly understood. The circadian clock is an essential regulator of daily behavioral rhythms in insects, including female calling. We investigated the variation in circadian clock genes of the rice and water-oat populations of C. suppressalis. We did this by comparing deduced amino acid sequences and the expression patterns of seven circadian clock genes (clock, cycle, period, timeless, timeout, cryptochrome1, and cryptochrome2) between females from each population. We found that the two populations had different variants of the timeout and cryptochrome1 genes and differed in the expression of period, timeless and timeout. This suggests that population-related variation in the circadian clock genes period, timeless, timeout and cryptochrome1 could be responsible for the different circadian rhythms of female calling in these host population of C. suppressalis. These results provide new insights into the molecular mechanisms underlying asynchronous sexual activity in insect populations and suggest new topics for future research on the origins and maintenance of population differentiation in insects.
Collapse
Affiliation(s)
- Li Zhu
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Shuo Feng
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Qiao Gao
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Wen Liu
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Wei-Hua Ma
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Xiao-Ping Wang
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| |
Collapse
|
7
|
Zhou Y, Sun D, Quan WL, Ding N, Liu W, Ma WH, Wang XP. Divergence in larval diapause induction between the rice and water-oat populations of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29715-29724. [PMID: 30145755 DOI: 10.1007/s11356-018-2930-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Differences in diapause traits can result in the seasonal reproductive isolation of host plant-associated insect populations and thereby facilitate the population divergence. The striped stem borer, Chilo suppressalis, has two host plant-associated populations: rice population and water-oat population. Several studies have found evidence that seasonal reproductive isolation between these populations is at least partially due to interpopulation differences in diapause. However, there still lack unambiguous evidence comparing characteristics of diapause induction for both populations. We compared the photoperiodic response and the age of peak photoperiod sensitivity of these populations and used RNA-Seq to compare the molecular response of diapause induction between populations. The photoperiodic response of the two populations differed at 25 °C; the critical night length of larvae from the rice population was 11 h and 20 min, whereas no obvious critical night length was in those from the water-oat population. In rice population, larvae were most sensitive to photoperiod at 9-12 days of age, whereas in water-oat population, larvae were the most sensitive to photoperiod at 9-10 days of age. The RNA-Seq results indicated that there were several differences in the molecular response of diapause induction and small overlap in differentially expressed genes (DEGs) between populations. Furthermore, GO analysis indicated that both rice and water-oat population's DEGs were significantly enriched in heme and iron binding. Besides, water-oat population's DEGs were significantly enriched in metabolizing nutrients but rice population's DEGs do not. Thus, our results described differences in diapause induction between rice and water-oat populations of C. suppressalis which could affect the timing of diapause and thereby contribute to the seasonal reproductive isolation of these host plant-associated populations. In conclusion, this work suggests that difference in diapause induction could promote the population divergence in insects associated with different host plants.
Collapse
Affiliation(s)
- Yuan Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dan Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wei-Li Quan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Nan Ding
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Wei-Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Zhong H, Li F, Chen J, Zhang J, Li F. Comparative transcriptome analysis reveals host-associated differentiation in Chilo suppressalis (Lepidoptera: Crambidae). Sci Rep 2017; 7:13778. [PMID: 29062034 PMCID: PMC5653757 DOI: 10.1038/s41598-017-14137-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
The striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is one of the most serious rice pests. Besides attacking rice, it also feeds on an economically important vegetable crop, water-oat Zizania latifolia. The species feeding on water-oat has higher growth and survival rate than those on rice, suggesting their success in adaptation to the new host plant. However, little is known about the molecular mechanisms of host plant adaptation. Here we investigated the midgut transcriptome responses of C. suppressalis larvae reared on rice and water-oat. A total of 1,633 differentially expressed genes were identified, with a greater number up-regulated on the more delicious new host. The up-regulation of most digestive and detoxification-related genes may be the result of adaptation to the changes in nutritional requirements and toxic chemicals during host shift. In contrast, down-regulation of ribosomal genes may be related to their better development performance when feeding on the new host. In conclusion, our results suggest that transcriptional regulation of genes related to digestion, detoxification and ribosome may play an important role in adaptation of C. suppressalis to a new host plant.
Collapse
Affiliation(s)
- Haiying Zhong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengbo Li
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jianming Chen
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Juefeng Zhang
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Li
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
9
|
Quan WL, Liu W, Zhou RQ, Chen R, Ma WH, Lei CL, Wang XP. Difference in diel mating time contributes to assortative mating between host plant-associated populations of Chilo suppressalis. Sci Rep 2017; 7:45265. [PMID: 28338099 PMCID: PMC5364412 DOI: 10.1038/srep45265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/27/2017] [Indexed: 12/01/2022] Open
Abstract
Behavioral isolation in animals can be mediated by inherent mating preferences and assortative traits, such as divergence in the diel timing of mating activity. Although divergence in the diel mating time could, in principle, promote the reproductive isolation of sympatric, conspecific populations, there is currently no unequivocal evidence of this. We conducted different mate-choice experiments to investigate the contribution of differences in diel mating activity to the reproductive isolation of the rice and water-oat populations of Chilo suppressalis. The results show that inter-population difference in diel mating activity contributes to assortative mating in these populations. In the rice population, most mating activity occurred during the first half of the scotophase, whereas in the water-oat population virtually all mating activity was confined to the second half of the scotophase. However, when the photoperiod of individuals from the water-oat population was altered to more closely align their mating activity with that of the rice population, mate choice was random. We conclude that inter-population differences in diel mating time contribute to assortative mating, and thereby the partial reproductive isolation, of these host-associated populations of C. suppressalis.
Collapse
Affiliation(s)
- Wei-Li Quan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Rui-Qi Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Rong Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei-Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|