1
|
Teder T, Taits K, Kaasik A, Tammaru T. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evol Lett 2022; 6:394-411. [PMID: 36579171 PMCID: PMC9783480 DOI: 10.1002/evl3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
- Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague165 21Czech Republic
| | - Kristiina Taits
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Ants Kaasik
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| |
Collapse
|
2
|
Smith TP, Thomas TJH, García-Carreras B, Sal S, Yvon-Durocher G, Bell T, Pawar S. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun 2019; 10:5124. [PMID: 31719536 PMCID: PMC6851113 DOI: 10.1038/s41467-019-13109-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/18/2019] [Indexed: 11/22/2022] Open
Abstract
Understanding how the metabolic rates of prokaryotes respond to temperature is fundamental to our understanding of how ecosystem functioning will be altered by climate change, as these micro-organisms are major contributors to global carbon efflux. Ecological metabolic theory suggests that species living at higher temperatures evolve higher growth rates than those in cooler niches due to thermodynamic constraints. Here, using a global prokaryotic dataset, we find that maximal growth rate at thermal optimum increases with temperature for mesophiles (temperature optima [Formula: see text]C), but not thermophiles ([Formula: see text]C). Furthermore, short-term (within-day) thermal responses of prokaryotic metabolic rates are typically more sensitive to warming than those of eukaryotes. Because climatic warming will mostly impact ecosystems in the mesophilic temperature range, we conclude that as microbial communities adapt to higher temperatures, their metabolic rates and therefore, biomass-specific CO[Formula: see text] production, will inevitably rise. Using a mathematical model, we illustrate the potential global impacts of these findings.
Collapse
Affiliation(s)
- Thomas P Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK.
| | - Thomas J H Thomas
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - Bernardo García-Carreras
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - Sofía Sal
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
| | - Samrāt Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
3
|
Effects of Temperature and Photoperiod on the Immature Development in Cassida rubiginosa Müll. and C. stigmatica Sffr. (Coleoptera: Chrysomelidae). Sci Rep 2019; 9:10047. [PMID: 31296885 PMCID: PMC6624315 DOI: 10.1038/s41598-019-46421-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/28/2019] [Indexed: 11/29/2022] Open
Abstract
Tortoise beetles (Cassida and related genera) are a large cosmopolitan group that includes several pests of agricultural crops and natural enemies of weeds but their biology and ecology remain poorly known. Using a set of environmental chambers, we address simultaneous effects of temperature and photoperiod on immature development and adult body mass in two European species, C. rubiginosa and C. stigmatica. Consistent with its broader distribution range, the former species is less susceptible to low rearing temperatures, develops faster and has a larger body mass than the latter. However, C. rubiginosa seems to be less adapted to late-season conditions as a short-day photoperiod accelerates its immature development to a lesser extent than it does in C. stigmatica, which nevertheless results in greater larval mortality and slightly but significantly smaller adults. By contrast, in C. stigmatica, which is more likely to encounter late-season conditions due to its slower life cycle, short-day acceleration of development is achieved at no cost to survivorship and final body mass. The experiment with C. stigmatica was repeated during two consecutive years with different methods and the main results proved to be well reproducible. In addition, laboratory results for C. rubiginosa agree with field data from literature.
Collapse
|
4
|
O'Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. GLOBAL CHANGE BIOLOGY 2018; 24:4554-4565. [PMID: 29940071 DOI: 10.1111/gcb.14360] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of trade-offs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long-term physiological, ecological, and biogeographic response to climate change.
Collapse
Affiliation(s)
- Daniel R O'Donnell
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | - Carolyn R Hamman
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
| | - Evan C Johnson
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
| | - Colin T Kremer
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Christopher A Klausmeier
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Elena Litchman
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| |
Collapse
|