1
|
Brabec J, Gauthier J, Selz OM, Knudsen R, Bilat J, Alvarez N, Seehausen O, Feulner PGD, Præbel K, Blasco-Costa I. Testing the radiation cascade in postglacial radiations of whitefish and their parasites: founder events and host ecology drive parasite evolution. Evol Lett 2024; 8:706-718. [PMID: 39328289 PMCID: PMC11424076 DOI: 10.1093/evlett/qrae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 09/28/2024] Open
Abstract
Reciprocal effects of adaptive radiations on the evolution of interspecific interactions, like parasitism, remain barely explored. We test whether the recent radiations of European whitefish (Coregonus spp.) across and within perialpine and subarctic lakes promote its parasite Proteocephalus fallax (Platyhelminthes: Cestoda) to undergo host repertoire expansion via opportunity and ecological fitting, or adaptive radiation by specialization. Using de novo genomic data, we examined P. fallax differentiation across lakes, within lakes across sympatric host species, and the contributions of host genetics versus host habitat use and trophic preferences. Whitefish intralake radiations prompted parasite host repertoire expansion in all lakes, whereas P. fallax differentiation remains incipient among sympatric fish hosts. Whitefish genetic differentiation per se did not explain the genetic differentiation among its parasite populations, ruling out codivergence with the host. Instead, incipient parasite differentiation was driven by whitefish phenotypic radiation in trophic preferences and habitat use in an arena of parasite opportunity and ecological fitting to utilize resources from emerging hosts. Whilst the whitefish radiation provides a substrate for the parasite to differentiate along the same water-depth ecological axis as Coregonus spp., the role of the intermediate hosts in parasite speciation may be overlooked. Parasite multiple-level ecological fitting to both fish and crustacean intermediate hosts resources may be responsible for parasite population substructure in Coregonus spp. We propose parasites' delayed arrival was key to the initial burst of postglacial intralake whitefish diversification, followed by opportunistic tapeworm host repertoire expansion and a delayed nonadaptive radiation cascade of incipient tapeworm differentiation. At the geographical scale, dispersal, founder events, and genetic drift following colonization of spatially heterogeneous landscapes drove strong parasite differentiation. We argue that these microevolutionary processes result in the mirroring of host-parasite phylogenies through phylogenetic tracking at macroevolutionary and geographical scales.
Collapse
Affiliation(s)
- Jan Brabec
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Evolutionary Parasitology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jérémy Gauthier
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Oliver M Selz
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Aquatic Restoration and Fisheries section, Federal Office for the Environment (FOEN), Bern, Switzerland
| | - Rune Knudsen
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| | - Julia Bilat
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Nadir Alvarez
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Science, Elverum, Norway
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Endoparasitic Gall Mites: Two New Novophytoptus Species (Eriophyoidea, Phytoptidae) from Southern African Sedges (Cyperaceae, Carex) and New Hypotheses on the Phylogeny of Novophytoptines. DIVERSITY 2023. [DOI: 10.3390/d15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Eriophyoid mites (Acariformes, Eriophyoidea) are microscopic chelicerates morphologically greatly preadapted to endoparasitism on plants. Members of at least six phylogenetically distant eriophyoid genera from two families homoplastically transitioned to endoparasitism and acquired the ability to penetrate under the plant epidermis and feed on parenchymatous cells, usually causing necrosis. Theoretically, endoparasites are expected to show patterns of codivergence with hosts more than ectoparasites. Novophytoptus Roivainen 1947 is the only eriophyoid genus comprising exclusively endoparasitic species living in subepidermal tissues of herbaceous monocots of three families of the order Poales: Cyperaceae, Juncaceae, and Poaceae. Here, we described two new endoparasitic species, N. limpopoensis n. sp. and N. zuluensis n. sp., from southern African sedges Carex spicatopaniculata Boeckeler ex C.B.Clarke and C. zuluensis C.B.Clarke, respectively, and investigated the Cox1 phylogeny of Novophytoptus. Contrary to expectations, molecular phylogenetics did not recover host-specific mite clades associated with Cyperaceae and Juncaceae, but revealed geographical groups of Novophytoptus species from Africa and Eurasia. Our results provide a substantial basis for future coevolutionary studies on novophytoptines, which will be possible when more species and sequences of Novophytoptus from geographically remote regions and from diverse hosts representing all major clades of Poales become available for analyses.
Collapse
|
3
|
Gougherty AV, Davies TJ. Towards a phylogenetic ecology of plant pests and pathogens. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200359. [PMID: 34538142 PMCID: PMC8450633 DOI: 10.1098/rstb.2020.0359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2021] [Indexed: 01/17/2023] Open
Abstract
Plant-pathogens and insect pests, hereafter pests, play an important role in structuring ecological communities, yet both native and introduced pests impose significant pressure on wild and managed systems, and pose a threat to food security. Global changes in climate and land use, and transportation of plants and pests around the globe are likely to further increase the range, frequency and severity of pest outbreaks in the future. Thus, there is a critical need to expand on current ecological theory to address these challenges. Here, we outline a phylogenetic framework for the study of plant and pest interactions. In plants, a growing body of work has suggested that evolutionary relatedness, phylogeny, strongly structures plant-pest associations-from pest host breadths and impacts, to their establishment and spread in new regions. Understanding the phylogenetic dimensions of plant-pest associations will help to inform models of invasive species spread, disease and pest risk in crops, and emerging pest outbreaks in native plant communities-which will have important implications for protecting food security and biodiversity into the future. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Andrew V. Gougherty
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - T. Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg 2092, South Africa
| |
Collapse
|
4
|
Pfenning-Butterworth AC, Davies TJ, Cressler CE. Identifying co-phylogenetic hotspots for zoonotic disease. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200363. [PMID: 34538148 PMCID: PMC8450626 DOI: 10.1098/rstb.2020.0363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
The incidence of zoonotic diseases is increasing worldwide, which makes identifying parasites likely to become zoonotic and hosts likely to harbour zoonotic parasites a critical concern. Prior work indicates that there is a higher risk of zoonotic spillover accruing from closely related hosts and from hosts that are infected with a high phylogenetic diversity of parasites. This suggests that host and parasite evolutionary history may be important drivers of spillover, but identifying whether host-parasite associations are more strongly structured by the host, parasite or both requires co-phylogenetic analyses that combine host-parasite association data with host and parasite phylogenies. Here, we use host-parasite datasets containing associations between helminth taxa and free-range mammals in combination with phylogenetic models to explore whether host, parasite, or both host and parasite evolutionary history influences host-parasite associations. We find that host phylogenetic history is most important for driving patterns of helminth-mammal association, indicating that zoonoses are most likely to come from a host's close relatives. More broadly, our results suggest that co-phylogenetic analyses across broad taxonomic scales can provide a novel perspective for surveying potential emerging infectious diseases. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
| | - T. Jonathan Davies
- Departments of Botany, Forest, and Conservation Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
5
|
Park E, Jorge F, Poulin R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol Ecol 2020; 29:3330-3345. [PMID: 32706932 DOI: 10.1111/mec.15562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
In parasites that strongly rely on a host for dispersal, geographic barriers that act on the host will simultaneously influence parasite distribution as well. If their association persists over macroevolutionary time it may result in congruent phylogenetic and phylogeographic patterns due to shared geographic histories. Here, we investigated the level of congruent evolutionary history at a regional and global scale in a highly specialised parasite taxon infecting hosts with limited dispersal abilities: the microsporidians Dictyocoela spp. and their amphipod hosts. Dictyocoela can be transmitted both vertically and horizontally and is the most common microsporidian genus occurring in amphipods in Eurasia. However, little is known about its distribution elsewhere. We started by conducting molecular screening to detect microsporidian parasites in endemic amphipod species in New Zealand; based on phylogenetic analyses, we identified nine species-level microsporidian taxa including six belonging to Dictyocoela. With a distance-based cophylogenetic analysis at the regional scale, we identified overall congruent phylogenies between Paracalliope, the most common New Zealand freshwater amphipod taxon, and their Dictyocoela parasites. Also, hosts and parasites showed similar phylogeographic patterns suggesting shared biogeographic histories. Similarly, at a global scale, phylogenies of amphipod hosts and their Dictyocoela parasites showed broadly congruent phylogenies. The observed patterns may have resulted from covicariance and/or codispersal, suggesting that the intimate association between amphipods and Dictyocoela may have persisted over macroevolutionary time. We highlight that shared biogeographic histories could play a role in the codiversification of hosts and parasites at a macroevolutionary scale.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
A newly discovered radiation of endoparasitic gastropods and their coevolution with asteroid hosts in Antarctica. BMC Evol Biol 2019; 19:180. [PMID: 31533610 PMCID: PMC6749685 DOI: 10.1186/s12862-019-1499-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine invertebrates are abundant and diverse on the continental shelf in Antarctica, but little is known about their parasitic counterparts. Endoparasites are especially understudied because they often possess highly modified body plans that pose problems for their identification. Asterophila, a genus of endoparasitic gastropod in the family Eulimidae, forms cysts in the arms and central discs of asteroid sea stars. There are currently four known species in this genus, one of which has been described from the Antarctic Peninsula (A. perknasteri). This study employs molecular and morphological data to investigate the diversity of Asterophila in Antarctica and explore cophylogenetic patterns between host and parasite. RESULTS A maximum-likelihood phylogeny of Asterophila and subsequent species-delimitation analysis uncovered nine well-supported putative species, eight of which are new to science. Most Asterophila species were found on a single host species, but four species were found on multiple hosts from one or two closely related genera, showing phylogenetic conservatism of host use. Both distance-based and event-based cophylogenetic analyses uncovered a strong signal of coevolution in this system, but most associations were explained by non-cospeciation events. DISCUSSION The prevalence of duplication and host-switching events in Asterophila and its asteroid hosts suggests that synchronous evolution may be rare even in obligate endoparasitic systems. The apparent restricted distribution of Asterophila from around the Scotia Arc may be an artefact of concentrated sampling in the area and a low obvious prevalence of infection. Given the richness of parasites on a global scale, their role in promoting host diversification, and the threat of their loss through coextinction, future work should continue to investigate parasite diversity and coevolution in vulnerable ecosystems.
Collapse
|