1
|
Santos AS, Cazetta E, Faria D, Lima TM, Lopes MTG, Carvalho CDS, Alves‐Pereira A, Morante‐Filho JC, Gaiotto FA. Tropical forest loss and geographic location drive the functional genomic diversity of an endangered palm tree. Evol Appl 2023; 16:1257-1273. [PMID: 37492151 PMCID: PMC10363835 DOI: 10.1111/eva.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 07/27/2023] Open
Abstract
Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.
Collapse
Affiliation(s)
- Alesandro Souza Santos
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Thâmara Moura Lima
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia – Campus SeabraSeabraBrazil
| | | | | | | | - José Carlos Morante‐Filho
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| |
Collapse
|
2
|
Garrote PJ, Castilla AR, Picó FX, Fedriani JM. Examining the spatiotemporal variation of genetic diversity and genetic rarity in the natural plant recolonization of human-altered areas. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe spatiotemporal genetic variation at early plant life stages may substantially affect the natural recolonization of human-altered areas, which is crucial to understand plant and habitat conservation. In animal-dispersed plants, dispersers’ behavior may critically drive the distribution of genetic variation. Here, we examine how genetic rarity is spatially and temporally structured in seedlings of a keystone pioneer palm (Chamaerops humilis) and how the variation of genetic rarity could ultimately affect plant recruitment. We intensively monitored the seed rain mediated by two medium-sized carnivores during two consecutive seasons in a Mediterranean human-altered area. We genotyped 143 out of 309 detected seedlings using 12 microsatellite markers. We found that seedlings emerging from carnivore-dispersed seeds showed moderate to high levels of genetic diversity and no evidence of inbreeding. We found inflated kinship among seedlings that emerged from seeds within a single carnivore fecal sample, but a dilution of such FSGS at larger spatial scales (e.g. latrine). Seedlings showed a significant genetic sub-structure and the sibling relationships varied depending on the spatial scale. Rare genotypes arrived slightly later throughout the dispersal season and tended to be spatially isolated. However, genetic rarity was not a significant predictor by itself which indicates that, at least, its influence on seedling survival was smaller than other spatiotemporal factors. Our results suggest strong C. humilis resilience to genetic bottlenecks due to human disturbances. We highlight the study of plant-animal interactions from a genetic perspective since it provides crucial information for plant conservation and the recovery of genetic plant resilience.
Collapse
|
3
|
Population genomics of the neotropical palm Copernicia prunifera (Miller) H. E. Moore: Implications for conservation. PLoS One 2022; 17:e0276408. [PMID: 36327224 PMCID: PMC9632875 DOI: 10.1371/journal.pone.0276408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products obtained from its leaf extracts are a source of income for local families and the agroindustry. Owing to the reduction of natural habitats and the absence of a sustainable management plan, the maintenance of the natural populations of this palm tree has been compromised. Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera populations using single nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing (GBS) to provide information that contributes to the conservation of this species. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior and may reflect responses to natural selection. Overall, the level of genomic diversity was compatible with the biological aspects of this species. The inbreeding coefficient (f) was negative for all populations, indicating excess heterozygotes. Most genetic variations occurred within populations (77.26%), and a positive correlation existed between genetic and geographic distances. The population structure evaluated through discriminant analysis of principal components (DAPC) revealed low genetic differentiation between populations. The results highlight the need for efforts to conserve C. prunifera as well as its distribution range to preserve its global genetic diversity and evolutionary potential.
Collapse
|
4
|
Vannuchi N, Jamar G, Pisani L, Braga ARC, de Rosso VV. Chemical composition, bioactive compounds extraction, and observed biological activities from jussara (Euterpe edulis): The exotic and endangered Brazilian superfruit. Compr Rev Food Sci Food Saf 2021; 20:3192-3224. [PMID: 34125477 DOI: 10.1111/1541-4337.12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/11/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
In this article, we reviewed studies on the fruits of the jussara palm (Euterpe edulis Martius), an endangered Brazilian Atlantic Forest palm tree, also coined as "Superfruit." We summarized the chemical components of the pulp and observed biological activities in murine and humans, as well as the best practices involving the extraction of its target compounds, bioavailability, and stability of extracts. Jussara has shown a rich phenolic profile that justifies its antioxidant properties, in addition to a considerable lipidic and energetic value. As the main feature, the fruit possesses large amounts of anthocyanins that can be commercially explored as a food additive or cosmetic colorants. Recent studies emphasized jussara's antioxidant, anti-inflammatory, and cardioprotective capabilities via reshaping of the gut microbiota. Further knowledge is needed to establish bioavailability and optimal serving size, as many of its antioxidant compounds go under chemical bioconversion in the intestinal tract. While extraction of phenolic compounds, anthocyanins, and oils have interesting results, more studies are required in order to reduce the use of conventional organic solvents and improve their stability and shelf life when added to food products, an area in which nanotechnology seems promising.
Collapse
Affiliation(s)
- Nicholas Vannuchi
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Giovana Jamar
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Luciana Pisani
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil.,Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau 210, Diadema, Sao Paulo, Brazil
| | - Veridiana Vera de Rosso
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil.,Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| |
Collapse
|
5
|
González-Robles A, García C, Salido T, Manzaneda AJ, Rey PJ. Extensive pollen-mediated gene flow across intensively managed landscapes in an insect-pollinated shrub native to semiarid habitats. Mol Ecol 2021; 30:3408-3421. [PMID: 33966307 DOI: 10.1111/mec.15950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Our knowledge of the impact of landscape fragmentation on gene flow patterns is mainly drawn from tropical and temperate ecosystems, where landscape features, such as the distance of a tree to the forest edge, drive connectivity and mating patterns. Yet, the structure of arid and semiarid plant communities - with open canopies and a scattered distribution of trees - differs greatly from those that are well-characterized in the literature. As a result, we ignore whether the documented consequences of landscape fragmentation on plant mating and gene flow patterns also hold for native plant communities in arid and semiarid regions. We investigated the relative contribution of plant traits, pollinator activity, and individual neighbourhood in explaining variation in mating and gene flow patterns of an insect-pollinated semiarid arborescent shrub, Ziziphus lotus, at three sites embedded in highly altered agriculture landscapes. We used 14 SSRs, seed paternity analyses, and individual mixed effect mating models (MEMMi) to estimate the individual mating variables and the pollen dispersal kernel at each site. Individual spatial location, flower density, and floral visitation rate explained most of the variation of mating variables. Unexpectedly, individual correlated paternity was very low and shrubs surrounded by the most degraded matrix exhibited an increased fraction of pollen immigration and a high effective number of pollen donors per mother shrub. Overall, our results reveal that an active pollinator assemblage ensures highly efficient mating, and maintains pollen-mediated gene flow and notable connectivity levels, even in highly altered landscapes, potentially halting genetic isolation within and between distant sites.
Collapse
Affiliation(s)
- Ana González-Robles
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Cristina García
- Department of Evolution, Ecology, and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Plant Biology, CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Teresa Salido
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| | - Pedro J Rey
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| |
Collapse
|
6
|
de Santana Lopes A, Gomes Pacheco T, Nascimento da Silva O, do Nascimento Vieira L, Guerra MP, Pacca Luna Mattar E, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. Plastid genome evolution in Amazonian açaí palm (Euterpe oleracea Mart.) and Atlantic forest açaí palm (Euterpe edulis Mart.). PLANT MOLECULAR BIOLOGY 2021; 105:559-574. [PMID: 33386578 DOI: 10.1007/s11103-020-01109-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The plastomes of E. edulis and E. oleracea revealed several molecular markers useful for genetic studies in natural populations and indicate specific evolutionary features determined by vicariant speciation. Arecaceae is a large and diverse family occurring in tropical and subtropical ecosystems worldwide. E. oleracea is a hyperdominant species of the Amazon forest, while E. edulis is a keystone species of the Atlantic forest. It has reported that E. edulis arose from vicariant speciation after the emergence of the belt barrier of dry environment (Cerrado and Caatinga biomes) between Amazon and Atlantic forests, isolating the E. edulis in the Atlantic forest. We sequenced the complete plastomes of E. edulis and E. oleracea and compared them concerning plastome structure, SSRs, tandem repeats, SNPs, indels, hotspots of nucleotide polymorphism, codon Ka/Ks ratios and RNA editing sites aiming to investigate evolutionary traits possibly affected by distinct environments. Our analyses revealed 303 SNPs, 91 indels, and 82 polymorphic SSRs among both species. Curiously, the narrow correlation among localization of repetitive sequences and indels strongly suggests that replication slippage is involved in plastid DNA mutations in Euterpe. Moreover, most non-synonymous substitutions represent amino acid variants in E. edulis that evolved specifically or in a convergent manner across the palm phylogeny. Amino acid variants observed in several plastid proteins in E. edulis were also identified as positive signatures across palm phylogeny. The higher incidence of specific amino acid changes in plastid genes of E. edulis in comparison with E. oleracea probably configures adaptive genetic variations determined by vicariant speciation. Our data indicate that the environment generates a selective pressure on the plastome making it more adapted to specific conditions.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Valter Antonio de Baura
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
7
|
Valverde J, Carvalho CDS, Jordano P, Galetti M. Large herbivores regulate the spatial recruitment of a hyperdominant Neotropical palm. Biotropica 2020. [DOI: 10.1111/btp.12873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Valverde
- CIBIO‐InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- Departamento de Ecología Universidad de Granada Granada Spain
| | - Carolina da Silva Carvalho
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Departamento de Genética e Evolução Universidade Federal de São Carlos (UFSCar) São Carlos Brazil
| | - Pedro Jordano
- Integrative Ecology Group Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (EBD‐CSIC) Sevilla Spain
| | - Mauro Galetti
- Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista (UNESP) Rio Claro Brazil
- Department of Biology University of Miami Coral Gables FL USA
| |
Collapse
|
8
|
Coelho GM, Santos AS, de Menezes IPP, Tarazi R, Souza FMO, Silva MDGCPC, Gaiotto FA. Genetic structure among morphotypes of the endangered Brazilian palm Euterpe edulis Mart (Arecaceae). Ecol Evol 2020; 10:6039-6048. [PMID: 32607211 PMCID: PMC7319139 DOI: 10.1002/ece3.6348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 11/07/2022] Open
Abstract
Euterpe edulis (Arecaceae) Mart has high ecological and economic importance providing food resources for more than 58 species of birds and 20 species of mammals, including humans. E. edulis is the second most exploited nontimber product from Brazilian Atlantic Forest. Due to overexploitation and destruction of habitats, E. edulis is threatened by extinction. Euterpe edulis populations have large morphological variations, with individuals having green, red, or yellow leaf sheath. However, no study has related phenotypic distinctions between populations and their levels of genetic structure. Thus, this study aimed to evaluate the diversity and genetic structure of different E. edulis morphotypes. We sampled 250 adult individuals in eight populations with the different morphotypes. Using 14 microsatellite markers, we access genetic diversity through population genetic parameters calculated in the GenAlex program and the diveRsity package in R. We used the Wilcoxon test to verify population bottlenecks and the genetic distance of Nei and Bayesian analysis for genetic clusters. The eight populations showed low allele richness, low observed heterozygosity, and high inbreeding values (f). In addition, six of the eight populations experienced genetic bottlenecks, which would partly explain the low genetic diversity in populations. Cluster analysis identified two clusters (K = 2), with green morphotype genetically distinguishing from yellow and red morphotypes. Thus, we show, for the first time, a strong genetic structure among E. edulis morphotypes even for geographically close populations.
Collapse
Affiliation(s)
- Gislaine Mendes Coelho
- Departamento de Ciências BiológicasCentro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Alesandro Souza Santos
- Departamento de Ciências BiológicasCentro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Ecologia Aplicada à ConservaçãoUniversidade Estadual de Santa CruzIlhéusBrazil
| | | | | | - Fernanda Maria Oliveira Souza
- Departamento de Ciências BiológicasCentro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | | | - Fernanda Amato Gaiotto
- Departamento de Ciências BiológicasCentro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Ecologia Aplicada à ConservaçãoUniversidade Estadual de Santa CruzIlhéusBrazil
| |
Collapse
|
9
|
Borges D, Mariano-Neto E, Caribé D, Corrêa R, Gaiotto F. Changes in fine-scale spatial genetic structure related to protection status in Atlantic Rain Forest fragment. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2019.125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Santos AS, Borges DB, Vivas CV, Berg CVD, Rodrigues PS, Tarazi R, Gaiotto FA. Gene pool sharing and genetic bottleneck effects in subpopulations of Eschweilera ovata (Cambess.) Mart. ex Miers (Lecythidaceae) in the Atlantic Forest of southern Bahia, Brazil. Genet Mol Biol 2019; 42:655-665. [PMID: 31528979 PMCID: PMC6905441 DOI: 10.1590/1678-4685-gmb-2018-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Forest loss and fragmentation are the main threats to the maintenance of the Atlantic Forest, an important global biodiversity hotspot. Because of the current critical level of deforestation, ecological corridors are needed to facilitate species dispersion and gene flow among fragments. This study was conducted to investigate the genetic variability and gene pool sharing of Eschweilera ovata in five forest remnants in southern Bahia, Brazil using nuclear simple sequence repeat (nSSR) and plastid simple sequence repeat (cpSSR) microsatellite markers. cpSSR marker analysis revealed the domains of four haplotypes, showing that 80% of the individuals had only four maternal origins, reflecting a founder effect and/or genetic bottleneck. The results of cpSSR and nSSR analyses indicated moderate genetic diversity, particularly in conservation units with full protection, which showed the best parameters of all areas evaluated. Another indication of the susceptibility of these populations to forest loss and fragmentation was the strong genetic bottleneck observed. In contrast, genetic structure analyses (FST and discriminant analysis of principal components) revealed gene pool sharing between the subpopulations, which may reflect the historical gene flow that occurred before forest fragmentation.
Collapse
Affiliation(s)
- Alesandro S Santos
- Laboratório de Ecologia Aplicada à Conservação, Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Daniela B Borges
- Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Caio V Vivas
- Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Cassio Van Den Berg
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Feira de Santana, BA, Brazil
| | - Polliana S Rodrigues
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | | | - Fernanda Amato Gaiotto
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
11
|
Soares LASS, Cazetta E, Santos LR, França DDS, Gaiotto FA. Anthropogenic Disturbances Eroding the Genetic Diversity of a Threatened Palm Tree: A Multiscale Approach. Front Genet 2019; 10:1090. [PMID: 31788000 PMCID: PMC6855268 DOI: 10.3389/fgene.2019.01090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/09/2019] [Indexed: 12/02/2022] Open
Abstract
Habitat loss and the illegal exploitation of natural resources are among the main drivers of species extinction around the world. These disturbances act at different scales, once changes in the landscape composition and configuration operate at large scales and exploitation of natural resources at local scales. Evidence suggests that both scales are capable of triggering genetic erosion in the remaining populations. However, most of the studies so far did not evaluate simultaneously the effects of these disturbances on genetic diversity and structure of plants. In this study, we used a multiple scale approach to empirically evaluate the impacts caused by local and landscape scale disturbances in the genetic diversity and structure of an endangered palm tree, Euterpe edulis. We sampled and genotyped with microsatellite markers 544 juveniles of E. edulis in 17 fragments of Atlantic Forest in Brazil. In addition, we estimated the local logging rate and the forest cover and isolation at landscape scale. We found that the palm populations have not undergone any recent bottleneck events and that only logging intensification had affected the fixation index and the number of private alleles. Additionally, we did not detect any evidence of spatial genetic structure or genetic divergence associated with environmental disturbance variables at different scales. However, we identified distinct genetic clusters, which may indicate a reduction of gene flow between fragments that were previously a continuous habitat. Our results show that local disturbances, which act directly on population size reduction, such as logging, modified the genetic diversity more rapidly, whereas genetic structure is probably more influenced by large-scale modifications. In this way, to maximize the conservation efforts of economically exploited species, we recommend to increase the inspection to reduce the illegal exploitation, and reforestation of degraded areas, in order to increase the gene flow in Atlantic Forest fragments.
Collapse
Affiliation(s)
- Leiza Aparecida Souza Serafim Soares
- Applied Ecology and Conservation Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Eliana Cazetta
- Applied Ecology and Conservation Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Larissa Rocha Santos
- Applied Ecology and Conservation Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Daniele de Souza França
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fernanda Amato Gaiotto
- Applied Ecology and Conservation Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.,Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|