1
|
Ropp AJ, Reece KS, Snyder RA, Song J, Biesack EE, McDowell JR. Fine-scale population structure of the northern hard clam ( Mercenaria mercenaria) revealed by genome-wide SNP markers. Evol Appl 2023; 16:1422-1437. [PMID: 37622097 PMCID: PMC10445094 DOI: 10.1111/eva.13577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
Aquaculture is growing rapidly worldwide, and sustainability is dependent on an understanding of current genetic variation and levels of connectivity among populations. Genetic data are essential to mitigate the genetic and ecological impacts of aquaculture on wild populations and guard against unintended human-induced loss of intraspecific diversity in aquacultured lines. Impacts of disregarding genetics can include loss of diversity within and between populations and disruption of local adaptation patterns, which can lead to a decrease in fitness. The northern hard clam, Mercenaria mercenaria (Linnaeus, 1758), is an economically valuable aquaculture species along the North American Atlantic and Gulf coasts. Hard clams have a pelagic larval phase that allows for dispersal, but the level of genetic connectivity among geographic areas is not well understood. To better inform the establishment of site-appropriate aquaculture brood stocks, this study used DArTseq™ genotyping by sequencing to characterize the genetic stock structure of wild clams sampled along the east coast of North America and document genetic diversity within populations. Samples were collected from 15 locations from Prince Edward Island, Canada, to South Carolina, USA. Stringent data filtering resulted in 4960 single nucleotide polymorphisms from 448 individuals. Five genetic breaks separating six genetically distinct populations were identified: Canada, Maine, Massachusetts, Mid-Atlantic, Chesapeake Bay, and the Carolinas (F ST 0.003-0.046; p < 0.0001). This is the first study to assess population genetic structure of this economically important hard clam along a large portion of its native range with high-resolution genomic markers, enabling identification of previously unrecognized population structure. Results of this study not only broaden insight into the factors shaping the current distribution of M. mercenaria but also reveal the genetic population dynamics of a species with a long pelagic larval dispersal period along the North American Atlantic and Gulf coasts.
Collapse
Affiliation(s)
- Ann J. Ropp
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Kimberly S. Reece
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Richard A. Snyder
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Jingwei Song
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Ellen E. Biesack
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Jan R. McDowell
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| |
Collapse
|
2
|
Dorant Y, Laporte M, Rougemont Q, Cayuela H, Rochette R, Bernatchez L. Landscape genomics of the American lobster (Homarus americanus). Mol Ecol 2022; 31:5182-5200. [PMID: 35960266 DOI: 10.1111/mec.16653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to the consequences of making use of putative adaptive loci to reliably infer population structure and thus more rigorously delineating biological management units in marine exploited species. Toward this end, we genotyped 14,893 single nucleotide polymorphism (SNPs) in 4190 lobsters sampled across 96 sampling sites distributed along 1000 km in the northwest Atlantic in both Canada and the USA. As typical for most marine species, we observed a weak, albeit highly significant genetic structure. We also found that adaptive genetic variation allows detecting fine-scale population structure not resolved by neutral genetic variation alone. Using the recent genome assembly of the American lobster, we were able to map and annotate several SNPs located in functional genes potentially implicated in adaptive processes such as thermal stress response, salinity tolerance and growth metabolism pathways. Taken together, our study indicates that weak population structure in high gene flow systems can be resolved at various spatial scales, and that putatively adaptive genetic variation can substantially enhance the delineation of biological management units of marine exploited species.
Collapse
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- IHPE, CNRS, Ifremer, Université de Montpellier, Université de Perpignan Via Domitia, Montpellier, France
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Ministère des Forêts de la Faune et des Parcs du Québec, Québec, Québec, Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - Rémy Rochette
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, Janes JK, Sperling FAH. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour 2021; 22:1149-1167. [PMID: 34637588 DOI: 10.1111/1755-0998.13528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.
Collapse
Affiliation(s)
- Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC, Canada
| | - Erin O Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Philip D Batista
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen A L Trevoy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada.,School of Environmental and Rural Studies, University of New England, Armidale, NSW, Australia
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Vu NTT, Zenger KR, Silva CNS, Guppy JL, Jerry DR. Population Structure, Genetic Connectivity, and Signatures of Local Adaptation of the Giant Black Tiger Shrimp (Penaeus monodon) throughout the Indo-Pacific Region. Genome Biol Evol 2021; 13:evab214. [PMID: 34529049 PMCID: PMC8495139 DOI: 10.1093/gbe/evab214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/04/2022] Open
Abstract
The giant black tiger shrimp (Penaeus monodon) is native to the Indo-Pacific and is the second most farmed penaeid shrimp species globally. Understanding genetic structure, connectivity, and local adaptation among Indo-Pacific black tiger shrimp populations is important for informing sustainable fisheries management and aquaculture breeding programs. Population genetic and outlier detection analyses were undertaken using 10,593 genome-wide single nucleotide polymorphisms (SNPs) from 16 geographically disparate Indo-Pacific P. monodon populations. Levels of genetic diversity were highest for Southeast Asian populations and were lowest for Western Indian Ocean (WIO) populations. Both neutral (n = 9,930) and outlier (n = 663) loci datasets revealed a pattern of strong genetic structure of P. monodon corresponding with broad geographical regions and clear genetic breaks among samples within regions. Neutral loci revealed seven genetic clusters and the separation of Fiji and WIO clusters from all other clusters, whereas outlier loci revealed six genetic clusters and high genetic differentiation among populations. The neutral loci dataset estimated five migration events that indicated migration to Southeast Asia from the WIO, with partial connectivity to populations in both oceans. We also identified 26 putatively adaptive SNPs that exhibited significant Pearson correlation (P < 0.05) between minor allele frequency and maximum or minimum sea surface temperature. Matched transcriptome contig annotations suggest putatively adaptive SNPs involvement in cellular and metabolic processes, pigmentation, immune response, and currently unknown functions. This study provides novel genome-level insights that have direct implications for P. monodon aquaculture and fishery management practices.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Tropical Futures Institute, James Cook University, Singapore
| |
Collapse
|
5
|
Garrick RC, Arantes ÍC, Stubbs MB, Havill NP. Weak spatial-genetic structure in a native invasive, the southern pine beetle ( Dendroctonus frontalis), across the eastern United States. PeerJ 2021; 9:e11947. [PMID: 34557344 PMCID: PMC8418799 DOI: 10.7717/peerj.11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of D. frontalis individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for D. frontalis, in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Ísis C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Megan B Stubbs
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, United States of America
| |
Collapse
|
6
|
Adhikari S, Revolinski SR, Eigenbrode SD, Burke IC. Genetic diversity and population structure of a global invader Mayweed chamomile ( Anthemis cotula): management implications. AOB PLANTS 2021; 13:plab049. [PMID: 34466213 PMCID: PMC8403231 DOI: 10.1093/aobpla/plab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Mayweed chamomile (Anthemis cotula) is a globally invasive, troublesome annual weed but knowledge of its genetic diversity, population structure in invaded regions and invasion patterns remains unstudied. Therefore, germplasm from 19 A. cotula populations (sites) from three geographically distinct invaded regions: the Walla Walla Basin (located in southern Washington) and the Palouse (located in both northern Idaho and eastern Washington), Pacific Northwest, USA and Kashmir Valley, India were grown in the greenhouse for DNA extraction and sequencing. A total of 18 829 single-nucleotide polymorphisms were called and filtered for each of 89 samples. Pairwise F ST, Nei's genetic distance, heterozygosity, Wright's inbreeding coefficient (F) and self-fertilization rates were estimated for populations within and among the three regions with a total of 19 populations comprised of 89 individuals. Overall measurements of genetic variation were low but significant among regions, populations and individuals. Despite the weak genetic structure, two main genetic clusters were evident, one comprised of populations from Palouse and Kashmir Valley, the other comprised of populations from the Walla Walla Basin. Significant selfing was observed in populations from the Walla Walla Basin and Palouse but not from Kashmir Valley, indicating that Mayweed chamomile in the Pacific Northwest, USA could persist with low pollinator or pollen donor densities. Although F ST values between the regions indicate Palouse populations are more closely related to Kashmir Valley than to Walla Walla Basin populations, based on Migrate-n analysis, panmixis was the most likely model, suggesting an unrestricted gene flow among all three regions. Our study indicated that Kashmir Valley populations either originated from or shared the origin with the Palouse populations, suggesting human-mediated migration of A. cotula between regions.
Collapse
Affiliation(s)
- Subodh Adhikari
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| | - Samuel R Revolinski
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
| | - Ian C Burke
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Garcia-Elfring A, Paccard A, Thurman TJ, Wasserman BA, Palkovacs EP, Hendry AP, Barrett RDH. Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highly-variable estuaries. Mol Ecol 2021; 30:2054-2064. [PMID: 33713378 DOI: 10.1111/mec.15879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Antoine Paccard
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada.,McGill University Genome Center, McGill University, Montreal, QC, Canada
| | - Timothy J Thurman
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Ben A Wasserman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Bootsma ML, Miller L, Sass GG, Euclide PT, Larson WA. The ghosts of propagation past: haplotype information clarifies the relative influence of stocking history and phylogeographic processes on contemporary population structure of walleye ( Sander vitreus). Evol Appl 2021; 14:1124-1144. [PMID: 33897825 PMCID: PMC8061267 DOI: 10.1111/eva.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Stocking of fish is an important tool for maintaining fisheries but can also significantly alter population genetic structure and erode the portfolio of within-species diversity that is important for promoting resilience and adaptability. Walleye (Sander vitreus) are a highly valued sportfish in the midwestern United States, a region characterized by postglacial recolonization from multiple lineages and an extensive history of stocking. We leveraged genomic data and recently developed analytical approaches to explore the population structure of walleye from two midwestern states, Minnesota and Wisconsin. We genotyped 954 walleye from 23 populations at ~20,000 loci using genotyping by sequencing and tested for patterns of population structure with single-SNP and microhaplotype data. Populations from Minnesota and Wisconsin were highly differentiated from each other, with additional substructure found in each state. Population structure did not consistently adhere to drainage boundaries, as cases of high intra-drainage and low inter-drainage differentiation were observed. Low genetic structure was observed between populations from the upper Wisconsin and upper Chippewa river watersheds, which are found as few as 50 km apart and were likely homogenized through historical stocking. Nevertheless, we were able to differentiate these populations using microhaplotype-based co-ancestry analysis, providing increased resolution over previous microsatellite studies and our other single SNP-based analyses. Although our results illustrate that walleye population structure has been influenced by past stocking practices, native ancestry still exists in most populations and walleye populations may be able to purge non-native alleles and haplotypes in the absence of stocking. Our study is one of the first to use genomic tools to investigate the influence of stocking on population structure in a nonsalmonid fish and outlines a workflow leveraging recently developed analytical methods to improve resolution of complex population structure that will be highly applicable in many species and systems.
Collapse
Affiliation(s)
- Matthew L. Bootsma
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Loren Miller
- Minnesota Department of Natural ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Greg G. Sass
- Office of Applied ScienceWisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWIUSA
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Present address:
Ted Stevens Marine Research InstituteAlaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationJuneauAKUSA
| |
Collapse
|
9
|
Yang H, You CJ, Tsui CKM, Tembrock LR, Wu ZQ, Yang DP. Phylogeny and biogeography of the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae) based on SNP markers. Ecol Evol 2021; 11:153-173. [PMID: 33437420 PMCID: PMC7790660 DOI: 10.1002/ece3.6982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/05/2022] Open
Abstract
The Japanese rhinoceros beetle Trypoxylus dichotomus is one of the largest beetle species in the world and is commonly used in traditional Chinese medicine. Ten subspecies of T. dichotomus and a related Trypoxylus species (T. kanamorii) have been described throughout Asia, but their taxonomic delimitations remain problematic. To clarify issues such as taxonomy, and the degree of genetic differentiation of Trypoxylus populations, we investigated the genetic structure, genetic variability, and phylogeography of 53 specimens of Trypoxylus species from 44 locations in five Asian countries (China, Japan, Korea, Thailand, and Myanmar). Using specific-locus amplified fragment sequencing (SLAF-seq) techniques, we developed 330,799 SLAFs over 114.16M reads, in turn yielding 46,939 high-resolution single nucleotide polymorphisms (SNPs) for genotyping. Phylogenetic analysis of SNPs indicated the presence of three distinct genetic groups, suggesting that the various subspecies could be treated as three groups of populations. PCA and ADMIXTURE analysis also identified three genetic clusters (North, South, West), which corresponded to their locations, suggesting that geographic factors were important in maintaining within population homogeneity and between population divergence. Analyses of SNP data confirmed the monophyly of certain subspecies on islands, while other subspecies (e.g., T. d. septentrionalis) were found to be polyphyletic and nested in more than one lineage. AMOVA demonstrated high level of differentiation among populations/groups. Also, pairwise F ST values revealed high differentiation, particularly between South and West, as well as between North and South. Despite the differentiation, measurable gene flow was inferred between genetic clusters but at varying rates and directions. Our study demonstrated that SLAF-seq derived markers outperformed 16S and COII sequences and provided improved resolution of the genetic differentiation of rhinoceros beetle populations from a large part of the species' range.
Collapse
Affiliation(s)
- Huan Yang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Chong Juan You
- Beijing Key Laboratory for Forest Pest ControlBeijing Forestry UniversityBeijingChina
| | - Clement K. M. Tsui
- Department of PathologySidra MedicineDohaQatar
- Department of Pathology and Laboratory MedicineWeill Cornell Medicine‐QatarAr‐RayyanQatar
- Division of Infectious DiseasesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Luke R. Tembrock
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | - Zhi Qiang Wu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - De Po Yang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Population genomic and phenotype diversity of invasive Drosophila suzukii in Hawai‘i. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Silva AR, Resende-Moreira LC, Carvalho CS, Lanes ECM, Ortiz-Vera MP, Viana PL, Jaffé R. Range-wide neutral and adaptive genetic structure of an endemic herb from Amazonian Savannas. AOB PLANTS 2020; 12:plaa003. [PMID: 32128104 PMCID: PMC7043808 DOI: 10.1093/aobpla/plaa003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 05/05/2023]
Abstract
Conserving genetic diversity in rare and narrowly distributed endemic species is essential to maintain their evolutionary potential and minimize extinction risk under future environmental change. In this study we assess neutral and adaptive genetic structure and genetic diversity in Brasilianthus carajensis (Melastomataceae), an endemic herb from Amazonian Savannas. Using RAD sequencing we identified a total of 9365 SNPs in 150 individuals collected across the species' entire distribution range. Relying on assumption-free genetic clustering methods and environmental association tests we then compared neutral with adaptive genetic structure. We found three neutral and six adaptive genetic clusters, which could be considered management units (MU) and adaptive units (AU), respectively. Pairwise genetic differentiation (F ST) ranged between 0.024 and 0.048, and even though effective population sizes were below 100, no significant inbreeding was found in any inferred cluster. Nearly 10 % of all analysed sequences contained loci associated with temperature and precipitation, from which only 25 sequences contained annotated proteins, with some of them being very relevant for physiological processes in plants. Our findings provide a detailed insight into genetic diversity, neutral and adaptive genetic structure in a rare endemic herb, which can help guide conservation and management actions to avoid the loss of unique genetic variation.
Collapse
Affiliation(s)
- Amanda R Silva
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-graduação em Ciências Biológicas - Botânica Tropical, Belém-PA, Brazil
- Museu Paraense Emílio Goeldi, Programa de Capacitação Institucional (PCI), Belém-PA, Brazil
| | | | | | - Eder C M Lanes
- Instituto Tecnológico Vale, Desenvolvimento Sustentável, Belém-PA, Brazil
| | - Mabel P Ortiz-Vera
- Instituto Tecnológico Vale, Desenvolvimento Sustentável, Belém-PA, Brazil
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Genética e Biologia Molecular, Belém-PA, Brazil
| | - Pedro L Viana
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-graduação em Ciências Biológicas - Botânica Tropical, Belém-PA, Brazil
| | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Desenvolvimento Sustentável, Belém-PA, Brazil
- Universidade de São Paulo, Departamento de Ecologia, São Paulo-SP, Brazil
- Corresponding author’s email address:
| |
Collapse
|
12
|
Ríos N, Casanova A, Hermida M, Pardo BG, Martínez P, Bouza C, García G. Population Genomics in Rhamdia quelen (Heptapteridae, Siluriformes) Reveals Deep Divergence and Adaptation in the Neotropical Region. Genes (Basel) 2020; 11:genes11010109. [PMID: 31963477 PMCID: PMC7017130 DOI: 10.3390/genes11010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rhamdia quelen, a Neotropical fish with hybridization between highly divergent mitochondrial DNA (mtDNA) lineages, represents an interesting evolutionary model. Previous studies suggested that there might be demographic differences between coastal lagoons and riverine environments, as well as divergent populations that could be reproductively isolated. Here, we investigated the genetic diversity pattern of this taxon in the Southern Neotropical Basin system that includes the La Plata Basin, Patos-Merin lagoon basin and the coastal lagoons draining to the SW Atlantic Ocean, through a population genomics approach using 2b-RAD-sequencing-derived single nucleotide polymorphisms (SNPs). The genomic scan identified selection footprints associated with divergence and suggested local adaptation environmental drivers. Two major genomic clusters latitudinally distributed in the Northern and Southern basins were identified, along with consistent signatures of divergent selection between them. Population structure based on the whole set of loci and on the presumptive neutral vs. adaptive loci showed deep genomic divergence between the two major clusters. Annotation of the most consistent SNPs under divergent selection revealed some interesting candidate genes for further functional studies. Moreover, signals of adaptation to a coastal lagoon environment mediated by purifying selection were found. These new insights provide a better understanding of the complex evolutionary history of R. quelen in the southernmost basin of the Neotropical region.
Collapse
Affiliation(s)
- Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
- Correspondence: ; Tel.: +598-25258618 (ext. 140)
| | - Adrián Casanova
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Belén G. Pardo
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Graciela García
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|
13
|
Gouin N, Bertin A, Espinosa MI, Snow DD, Ali JM, Kolok AS. Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113099. [PMID: 31600702 DOI: 10.1016/j.envpol.2019.113099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Agrichemical contamination can provoke evolutionary responses in freshwater populations. It is a particularly relevant issue in semi-arid regions due to the sensitivity of endemic species to pollutants and to interactions with temperature stress. This paper investigates the presence of pesticides in rivers within a semi-arid agricultural watershed of Chile, testing for their effects on population genetic characteristics of the endemic mayfly Andesiops torrens (Insecta, Ephemeroptera). Pesticides were detected in sediment samples in ten out of the 30 sites analyzed throughout the upper part of the Limarí watershed. To study the evolutionary impact of such contamination on A. torrens, we used a genome-wide approach and analyzed 2056 single nucleotide polymorphisms (SNPs) loci in 551 individuals from all sites. Genetic differentiation was weak between populations, suggesting high gene flow across the study area. While we did not find evidence of pesticide effects on genetic diversity nor on population differentiation, the allele frequency of three outlier SNP loci correlated significantly with pesticide occurrence. Interrogation of genomic resources indicates that two of these SNPs are located within functional genes that encode for the low-density lipoprotein receptor-related protein 2 and Dumpy, both potentially involved in insect cuticle resistance processes. Such genomic signatures of local adaptation are indicative of past adverse effects of pesticide exposure on the locally adapted populations. Our results reveal that A. torrens is sensitive to pesticide exposure, but that a high gene flow may confer resilience to contamination. This research supports the contention that A. torrens is an ideal model organism to study evolutionary responses induced by pesticides on non-target, endemic species.
Collapse
Affiliation(s)
- Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile; Centro de Estudios Avanzados Zonas en Áridas, Raúl Bitrán, 1305, La Serena, Chile.
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Mara I Espinosa
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0844, United States.
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 83844-3002, United States.
| |
Collapse
|
14
|
Mayrand P, Filotas É, Wittische J, James PMA. The role of dispersal, selection, and timing of sampling on the false discovery rate of loci under selection during geographic range expansion. Genome 2019; 62:715-727. [PMID: 31344331 DOI: 10.1139/gen-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identifying adaptive loci is important to understand the evolutionary potential of species undergoing range expansion. However, in expanding populations, spatial demographic processes such as allele surfing can create spatial patterns of neutral genetic variation that appear similar to those generated through adaptive processes. As a result, the false discovery rate of adaptive loci may be inflated in landscape genomic analyses. Here, we take a simulation modelling approach to investigate how range expansion affects our ability to correctly distinguish between neutral and adaptive genetic variation, using the mountain pine beetle outbreak system as a motivating example. We simulated the demographic and population genetic dynamics of populations undergoing range expansion using an individual-based genetic model CDMetaPOP. We investigated how the false discovery rate of adaptive loci is affected by (i) dispersal capacity, (ii) timing of sampling, and (iii) the strength of selection on an adaptive reference locus. We found that a combination of weak dispersal, weak selection, and early sampling presents the greatest risk of misidentifying loci under selection. Expanding populations present unique challenges to the reliable identification of adaptive loci. We demonstrate that there is a need for further methodological development to account for directional demographic processes in landscape genomics.
Collapse
Affiliation(s)
- Paul Mayrand
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Élise Filotas
- TÉLUQ (Université du Québec), Département Science et Technologie, 5800 rue Saint-Denis, Montréal, QC H2S 3L5, Canada
| | - Julian Wittische
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Patrick M A James
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Trevoy SAL, Janes JK, Muirhead K, Sperling FAH. Repurposing population genetics data to discern genomic architecture: A case study of linkage cohort detection in mountain pine beetle ( Dendroctonus ponderosae). Ecol Evol 2019; 9:1147-1159. [PMID: 30805148 PMCID: PMC6374669 DOI: 10.1002/ece3.4803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.
Collapse
Affiliation(s)
| | - Jasmine K. Janes
- School of Environmental & Rural SciencesUniversity of New EnglandArmidaleNew South WalesAustralia
- Biology DepartmentVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Kevin Muirhead
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
16
|
Pfeiffer VW, Ford BM, Housset J, McCombs A, Blanco‐Pastor JL, Gouin N, Manel S, Bertin A. Partitioning genetic and species diversity refines our understanding of species-genetic diversity relationships. Ecol Evol 2018; 8:12351-12364. [PMID: 30619550 PMCID: PMC6308885 DOI: 10.1002/ece3.4530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
Disentangling the origin of species-genetic diversity correlations (SGDCs) is a challenging task that provides insight into the way that neutral and adaptive processes influence diversity at multiple levels. Genetic and species diversity are comprised by components that respond differently to the same ecological processes. Thus, it can be useful to partition species and genetic diversity into their different components to infer the mechanisms behind SGDCs. In this study, we applied such an approach using a high-elevation Andean wetland system, where previous evidence identified neutral processes as major determinants of the strong and positive covariation between plant species richness and AFLP genetic diversity of the common sedge Carex gayana. To tease apart putative neutral and non-neutral genetic variation of C. gayana, we identified loci putatively under selection from a dataset of 1,709 SNPs produced using restriction site-associated DNA sequencing (RAD-seq). Significant and positive relationships between local estimates of genetic and species diversities (α-SGDCs) were only found with the putatively neutral loci datasets and with species richness, confirming that neutral processes were primarily driving the correlations and that the involved processes differentially influenced local species diversity components (i.e., richness and evenness). In contrast, SGDCs based on genetic and community dissimilarities (β-SGDCs) were only significant with the putative non-neutral datasets. This suggests that selective processes influencing C. gayana genetic diversity were involved in the detected correlations. Together, our results demonstrate that analyzing distinct components of genetic and species diversity simultaneously is useful to determine the mechanisms behind species-genetic diversity relationships.
Collapse
Affiliation(s)
- Vera Wilder Pfeiffer
- Nelson Institute for Environmental ScienceUniversity of Wisconsin – MadisonMadisonWisconsin
| | - Brett Michael Ford
- Department of BiologyUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Johann Housset
- Alcina ForetsMontpellierFrance
- Centre d’étude de la forêtUniversité du Québec à MontréalMontréalQuebecCanada
| | - Audrey McCombs
- Department of Statistics, Ecology and Evolutionary Biology ProgramIowa State UniversityAmesIowa
| | | | - Nicolas Gouin
- Departamento de BiologíaFacultad de CienciasUniversidad de La SerenaLa SerenaChile
- Centro de Estudios Avanzados en Zonas ÁridasLa SerenaChile
- Instituto de Investigación Multidisciplinar en Ciencia y TecnologíaUniversidad de La SerenaLa SerenaChile
| | - Stéphanie Manel
- EPHEPSL Research UniversityCNRSUM, SupAgro, IRDINRAUMR 5175 CEFEMontpellierFrance
| | - Angéline Bertin
- Departamento de BiologíaFacultad de CienciasUniversidad de La SerenaLa SerenaChile
| |
Collapse
|
17
|
Pleistocene climate cycling and host plant association shaped the demographic history of the bark beetle Pityogenes chalcographus. Sci Rep 2018; 8:14207. [PMID: 30242185 PMCID: PMC6155062 DOI: 10.1038/s41598-018-32617-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle’s dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.
Collapse
|
18
|
Lower SE, Stanger-Hall KF, Hall DW. Molecular variation across populations of a widespread North American firefly, Photinus pyralis, reveals that coding changes do not underlie flash color variation or associated visual sensitivity. BMC Evol Biol 2018; 18:129. [PMID: 30170542 PMCID: PMC6119266 DOI: 10.1186/s12862-018-1251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Genes underlying signal production and reception are expected to evolve to maximize signal detection in specific environments. Fireflies vary in their light signal color both within and between species, and thus provide an excellent system in which to study signal production and reception in the context of signaling environments. Differences in signal color have been hypothesized to be due to variation in the sequence of luciferase, the enzyme that catalyzes the light reaction. Similarly, differences in visual sensitivity, which are expected to match signal color, have been hypothesized to be due to variation in the sequence of opsins, the protein component of visual pigments. Here we investigated (1) whether sequence variation in luciferase correlates with variation in signal color and (2) whether sequence variation in opsins correlates with inferred matching visual sensitivity across populations of a widespread North American firefly species, Photinus pyralis. We further tested (3) whether selection has acted on these loci by examining their population-level differentiation relative to the distribution of differentiation derived from a genome-wide sample of loci generated by double-digest RADseq. Results We found virtually no coding variation in luciferase or opsins. However, there was extreme divergence in non-coding variation in luciferase across populations relative to a panel of random genomic loci. Conclusions The absence of protein variation at both loci challenges the paradigm that variation in signal color and visual sensitivity in fireflies is exclusively due to coding variation in luciferase and opsin genes. Instead, flash color variation within species must involve other mechanisms, such as abdominal pigmentation or regulation of light organ physiology. Evidence for selection at non-coding variation in luciferase suggests that selection is targeting luciferase regulation and may favor differ expression levels across populations. Electronic supplementary material The online version of this article (10.1186/s12862-018-1251-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah E Lower
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA. .,Present address: Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| | | | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
19
|
Zayasu Y, Satoh N, Shinzato C. Genetic diversity of farmed and wild populations of the reef-building coral, Acropora tenuis. Restor Ecol 2018. [DOI: 10.1111/rec.12687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuna Zayasu
- Marine Genomics Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute; The University of Tokyo; Chiba, 277-8564 Japan
| |
Collapse
|
20
|
Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nat Commun 2017; 8:1593. [PMID: 29150608 PMCID: PMC5693900 DOI: 10.1038/s41467-017-01761-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
Abstract
Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence. The evolution of new sex chromosomes potentially generates reproductive isolation. Here, Bracewell et al. combine crossing experiments with population and functional genomics to characterize neo-sex chromosome evolution and incipient speciation in the mountain pine beetle, Dendroctonus ponderosae.
Collapse
|
21
|
Dowle EJ, Bracewell RR, Pfrender ME, Mock KE, Bentz BJ, Ragland GJ. Reproductive isolation and environmental adaptation shape the phylogeography of mountain pine beetle (Dendroctonus ponderosae). Mol Ecol 2017; 26:6071-6084. [PMID: 29116665 DOI: 10.1111/mec.14342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/12/2017] [Accepted: 08/05/2017] [Indexed: 12/23/2022]
Abstract
Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North America to reveal the extent of the phylogeographic differences between Y haplotypes compared to autosomal and X-linked loci. Clustering and geneflow analyses revealed three distinct Y haplogroups geographically positioned within and on either side of the Great Basin Desert. Despite close geographic proximity between populations on the boundaries of each Y haplogroup, there was extremely low Y haplogroup mixing among populations, and gene flow on the autosomes was reduced across Y haplogroup boundaries. These results are consistent with a previous study suggesting that independent degradation of a recently evolved neo-Y chromosome in previously isolated populations causes male sterility or inviability among Y haplotype lineages. Phylogeographic results supported historic contraction of MPB into three separate Pleistocene glacial refugia followed by postglacial range expansion and secondary contact. Distinct sets of SNPs were statistically associated with environmental data among the most genetically distinct sets of geographic populations. This finding suggests that the process of adaptation to local climatic conditions is influenced by population genetic structure, with evidence for largely independent evolution in the most genetically isolated Y haplogroup.
Collapse
Affiliation(s)
- Eddy J Dowle
- Department of Entomology, Kansas State University, Manhattan, KS, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Ryan R Bracewell
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Karen E Mock
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Barbara J Bentz
- Department of Wildland Resources, Utah State University, Logan, UT, USA.,USDA Forest Service, Rocky Mountain Research Station, Logan, UT, USA
| | - Gregory J Ragland
- Department of Entomology, Kansas State University, Manhattan, KS, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
22
|
Ojeda Alayon DI, Tsui CKM, Feau N, Capron A, Dhillon B, Zhang Y, Massoumi Alamouti S, Boone CK, Carroll AL, Cooke JEK, Roe AD, Sperling FAH, Hamelin RC. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol Ecol 2017; 26:2077-2091. [PMID: 28231417 DOI: 10.1111/mec.14074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.
Collapse
Affiliation(s)
- Dario I Ojeda Alayon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Clement K M Tsui
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Arnaud Capron
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Yiyuan Zhang
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Sepideh Massoumi Alamouti
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada, V2N 4Z9
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Amanda D Roe
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3.,Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St E, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4.,Institut de Biologie Intégrative des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec City, QC, Canada, G1V 0A6
| |
Collapse
|