1
|
Minne AJP, Vranken S, Wheeler D, Wood G, Batley J, Wernberg T, Coleman MA. Strong Environmental and Genome-Wide Population Differentiation Underpins Adaptation and High Genomic Vulnerability in the Dominant Australian Kelp ( Ecklonia radiata). Ecol Evol 2025; 15:e71158. [PMID: 40365477 PMCID: PMC12068950 DOI: 10.1002/ece3.71158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
Ongoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high-quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm-edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm-edge (northern) populations and assisted gene flow in cool-edge (Tasmania) populations.
Collapse
Affiliation(s)
- Antoine J. P. Minne
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Sofie Vranken
- Biology Department, Research Group PhycologyGhent UniversityGhentBelgium
| | - David Wheeler
- New South Wales Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Georgina Wood
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Thomas Wernberg
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Institute of Marine ResearchHisNorway
| | - Melinda A. Coleman
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| |
Collapse
|
2
|
Shi T, Gao Z, Zhang Y, Rausher MD, Chen J. A Strategy of Assessing Gene Copy Number Differentiation Between Populations Using Ultra-Fast De Novo Assembly of Next-Generation Sequencing Data. Mol Ecol Resour 2025; 25:e14080. [PMID: 39925235 DOI: 10.1111/1755-0998.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Gene duplication and loss play pivotal roles in the evolutionary dynamics of genomes, contributing to species phenotypic diversity and adaptation. However, detecting copy number variations (CNVs) in homoploid populations and newly-diverged species using short reads from next-generation sequencing (NGS) with traditional methods can often be challenging due to uneven read coverage caused by variations in GC content and the presence of repetitive sequences. To address these challenges, we developed a novel pipeline, ST4gCNV, which leverages ultra-fast de novo assemblies of NGS data to detect gene-specific CNVs between populations. The pipeline effectively reduces the variance of read coverage due to technical factors such as GC bias, providing a reliable CNV detection with a minimum sequencing depth of 10. We successfully apply ST4gCNV to the resequencing analysis of homoploid species Nelumbo nucifera and Nelumbo lutea (lotus). We reveal significant CNV-driven differentiation between these species, particularly in genes related to petal colour diversity such as those involved in the anthocyanin pathway. By highlighting the extensive gene duplication and loss events in Nelumbo, our study demonstrates the utility of ST4gCNV in population genomics and underscores its potential of integrating genomic CNV analysis with traditional SNP-based resequencing analysis.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhiyan Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yue Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jinming Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Gutiérrez-Ortega JS, Pérez-Farrera MA, Matsuo A, Sato MP, Suyama Y, Calonje M, Vovides AP, Kajita T, Watano Y. The phylogenetic reconstruction of the Neotropical cycad genus Ceratozamia (Zamiaceae) reveals disparate patterns of niche evolution. Mol Phylogenet Evol 2024; 190:107960. [PMID: 37918683 DOI: 10.1016/j.ympev.2023.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.
Collapse
Affiliation(s)
| | - Miguel Angel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología Evolutiva, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico.
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mitsuhiko P Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | | | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., 91070 Xalapa, Mexico
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
4
|
Dallaire X, Bouchard R, Hénault P, Ulmo-Diaz G, Normandeau E, Mérot C, Bernatchez L, Moore JS. Widespread Deviant Patterns of Heterozygosity in Whole-Genome Sequencing Due to Autopolyploidy, Repeated Elements, and Duplication. Genome Biol Evol 2023; 15:evad229. [PMID: 38085037 PMCID: PMC10752349 DOI: 10.1093/gbe/evad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Most population genomic tools rely on accurate single nucleotide polymorphism (SNP) calling and filtering to meet their underlying assumptions. However, genomic complexity, resulting from structural variants, paralogous sequences, and repetitive elements, presents significant challenges in assembling contiguous reference genomes. Consequently, short-read resequencing studies can encounter mismapping issues, leading to SNPs that deviate from Mendelian expected patterns of heterozygosity and allelic ratio. In this study, we employed the ngsParalog software to identify such deviant SNPs in whole-genome sequencing (WGS) data with low (1.5×) to intermediate (4.8×) coverage for four species: Arctic Char (Salvelinus alpinus), Lake Whitefish (Coregonus clupeaformis), Atlantic Salmon (Salmo salar), and the American Eel (Anguilla rostrata). The analyses revealed that deviant SNPs accounted for 22% to 62% of all SNPs in salmonid datasets and approximately 11% in the American Eel dataset. These deviant SNPs were particularly concentrated within repetitive elements and genomic regions that had recently undergone rediploidization in salmonids. Additionally, narrow peaks of elevated coverage were ubiquitous along all four reference genomes, encompassed most deviant SNPs, and could be partially associated with transposons and tandem repeats. Including these deviant SNPs in genomic analyses led to highly distorted site frequency spectra, underestimated pairwise FST values, and overestimated nucleotide diversity. Considering the widespread occurrence of deviant SNPs arising from a variety of sources, their important impact in estimating population parameters, and the availability of effective tools to identify them, we propose that excluding deviant SNPs from WGS datasets is required to improve genomic inferences for a wide range of taxa and sequencing depths.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
| | - Raphael Bouchard
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Philippe Hénault
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Gabriela Ulmo-Diaz
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Eric Normandeau
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
- Plateforme de bio-informatique de l’IBIS, Université Laval, Québec, Canada
| | - Claire Mérot
- CNRS, UMR 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Louis Bernatchez
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Jean-Sébastien Moore
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| |
Collapse
|
5
|
Karunarathne P, Zhou Q, Schliep K, Milesi P. A comprehensive framework for detecting copy number variants from single nucleotide polymorphism data: 'rCNV', a versatile r package for paralogue and CNV detection. Mol Ecol Resour 2023; 23:1772-1789. [PMID: 37515483 DOI: 10.1111/1755-0998.13843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent studies have highlighted the significant role of copy number variants (CNVs) in phenotypic diversity, environmental adaptation and species divergence across eukaryotes. The presence of CNVs also has the potential to introduce genotyping biases, which can pose challenges to accurate population and quantitative genetic analyses. However, detecting CNVs in genomes, particularly in non-model organisms, presents a formidable challenge. To address this issue, we have developed a statistical framework and an accompanying r software package that leverage allelic-read depth from single nucleotide polymorphism (SNP) data for accurate CNV detection. Our framework capitalises on two key principles. First, it exploits the distribution of allelic-read depth ratios in heterozygotes for individual SNPs by comparing it against an expected distribution based on binomial sampling. Second, it identifies SNPs exhibiting an apparent excess of heterozygotes under Hardy-Weinberg equilibrium. By employing multiple statistical tests, our method not only enhances sensitivity to sampling effects but also effectively addresses reference biases, resulting in optimised SNP classification. Our framework is compatible with various NGS technologies (e.g. RADseq, Exome-capture). This versatility enables CNV calling from genomes of diverse complexities. To streamline the analysis process, we have implemented our framework in the user-friendly r package 'rCNV', which automates the entire workflow seamlessly. We trained our models using simulated data and validated their performance on four datasets derived from different sequencing technologies, including RADseq (Chinook salmon-Oncorhynchus tshawytscha), Rapture (American lobster-Homarus americanus), Exome-capture (Norway spruce-Picea abies) and WGS (Malaria mosquito-Anopheles gambiae).
Collapse
Affiliation(s)
- Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
- Institute of Population Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| |
Collapse
|
6
|
Clark LV, Mays W, Lipka AE, Sacks EJ. A population-level statistic for assessing Mendelian behavior of genotyping-by-sequencing data from highly duplicated genomes. BMC Bioinformatics 2022; 23:101. [PMID: 35317727 PMCID: PMC8939213 DOI: 10.1186/s12859-022-04635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Given the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis. The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires genotyping to be performed first at a high computational cost, whereas counting the number of sequence tags detected per genotype is computationally quick but very ineffective in inbred or polyploid populations. Therefore, new methods are needed for filtering paralogs. Results We introduce a novel statistic, Hind/HE, that uses the probability that two reads sampled from a genotype will belong to different alleles, instead of observed heterozygosity. The expected value of Hind/HE is the same across all loci in a dataset, regardless of read depth or allele frequency. In contrast to methods based on observed heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. In addition to filtering paralogs, it can be used to filter loci with null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid status. We demonstrate that the statistic is useful at read depths as low as five to 10, well below the depth needed for accurate genotype calling in polyploid and outcrossing species. Conclusions Our methodology for estimating Hind/HE across loci and individuals, as well as determining reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available at https://github.com/lvclark/polyRAD. In large sequencing datasets, we anticipate that the ability to filter markers and identify problematic individuals prior to genotype calling will save researchers considerable computational time. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04635-9.
Collapse
Affiliation(s)
- Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Wittney Mays
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik J Sacks
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
He JC, Li SY, He WZ, Xian JJ, Ma XY, Wang YC, Zhang MC, Ye GX, Liang B, Xia Q, Li Q. Application of Restriction Site-Associated DNA Sequencing (RAD-Seq) for Copy Number Variation and Triploidy Detection in Human. Cytogenet Genome Res 2021; 161:406-413. [PMID: 34657031 DOI: 10.1159/000518930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
At present, low-pass whole-genome sequencing (WGS) is frequently used in clinical research and in the screening of copy number variations (CNVs). However, there are still some challenges in the detection of triploids. Restriction site-associated DNA sequencing (RAD-Seq) technology is a reduced-representation genome sequencing technology developed based on next-generation sequencing. Here, we verified whether RAD-Seq could be employed to detect CNVs and triploids. In this study, genomic DNA of 11 samples was extracted employing a routine method and used to build libraries. Five cell lines of known karyotypes and 6 triploid abortion tissue samples were included for RAD-Seq testing. The triploid samples were confirmed by STR analysis and also tested by low-pass WGS. The accuracy and efficiency of detecting CNVs and triploids by RAD-Seq were then assessed, compared with low-pass WGS. In our results, RAD-Seq detected 11 out of 11 (100%) chromosomal abnormalities, including 4 deletions and 1 aneuploidy in the purchased cell lines and all triploid samples. By contrast, these triploids were missed by low-pass WGS. Furthermore, RAD-Seq showed a higher resolution and more accurate allele frequency in the detection of triploids than low-pass WGS. Our study shows that, compared with low-pass WGS, RAD-Seq has relatively higher accuracy in CNV detection at a similar cost and is capable of identifying triploids. Therefore, the application of this technique in medical genetics has a significant potential value.
Collapse
Affiliation(s)
- Jian-Chun He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shao-Ying Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Zhi He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jia-Jia Xian
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yan Ma
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Chao Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min-Cong Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Xin Ye
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Liang
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Qin Xia
- Basecare Medical Device Co., Ltd, Suzhou, China,
| | - Qing Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Reynes L, Thibaut T, Mauger S, Blanfuné A, Holon F, Cruaud C, Couloux A, Valero M, Aurelle D. Genomic signatures of clonality in the deep water kelp Laminaria rodriguezii. Mol Ecol 2021; 30:1806-1822. [PMID: 33629449 DOI: 10.1111/mec.15860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.
Collapse
Affiliation(s)
- Lauric Reynes
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Thierry Thibaut
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Stéphane Mauger
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Aurélie Blanfuné
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | | | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Myriam Valero
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Didier Aurelle
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Molina-Freaner F, Hernández-López A, Kawaguchi L, Nagano AJ, Kajita T, Watano Y, Tsuchimatsu T, Takahashi Y, Murakami M. Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. THE NEW PHYTOLOGIST 2020; 227:1872-1884. [PMID: 32392621 DOI: 10.1111/nph.16647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.
Collapse
Affiliation(s)
| | | | - Takuro Ito
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Miguel Angel Pérez-Farrera
- Laboratorio de Ecología Evolutiva, Herbario Eizi Matuda, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, 29039, Mexico
| | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, 91070, Mexico
| | - José F Martínez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, 37684, Mexico
| | - Lina Kawaguchi
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa, 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuma Takahashi
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masashi Murakami
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
10
|
An easy and robust method for isolation and validation of single-nucleotide polymorphic markers from a first Erysiphe alphitoides draft genome. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01580-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Hartvig I, So T, Changtragoon S, Tran HT, Bouamanivong S, Ogden R, Senn H, Vieira FG, Turner F, Talbot R, Theilade I, Nielsen LR, Kjær ED. Conservation genetics of the critically endangered Siamese rosewood (Dalbergia cochinchinensis): recommendations for management and sustainable use. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01279-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Sun Y, Zhang Y, Zhang X. Synonymous SNPs of viral genes facilitate virus to escape host antiviral RNAi immunity. RNA Biol 2019; 16:1697-1710. [PMID: 31416386 PMCID: PMC6844561 DOI: 10.1080/15476286.2019.1656026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022] Open
Abstract
Synonymous single nucleotide polymorphisms (SNPs) are involved in codon usage preference or mRNA splicing. Up to date, however, the role of synonymous SNPs in immunity remains unclear. To address this issue, the SNPs of white spot syndrome virus (WSSV) were characterized in shrimp in the present study. Our results indicated that there existed synonymous SNPs in the mRNAs of wsv151 and wsv226, two viral genes of WSSV. In the presence of SNP siRNA, wild-type siRNA, wild-type mRNA and SNP mRNA of wsv151 or wsv226, RNAi was significantly suppressed, showing that the synonymous SNPs of wsv151 and wsv226 played negative roles in host siRNA pathway due to mismatch of siRNA with its target. In insect cells, the mismatch, caused by synonymous SNPs of wsv151 or wsv226, between siRNA and its target inhibited the host RNAi. Furthermore, the data revealed that the co-injection of SNP siRNA and wild-type siRNA of wsv151 or wsv226 into WSSV-infected shrimp led to a significant increase of WSSV copies compared with that of SNP siRNA alone or wild-type siRNA alone, indicating that the synonymous SNPs of viral genes could be a strategy of virus escaping host siRNA pathway in shrimp in vivo. Therefore, our study provided novel insights into the underlying mechanism of virus escaping host antiviral RNAi immunity by synonymous SNPs of viral genes.
Collapse
Affiliation(s)
- Yuechao Sun
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Rincon-Sandoval M, Betancur-R R, Maldonado-Ocampo JA. Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Mol Ecol 2019; 28:1096-1115. [PMID: 30714250 DOI: 10.1111/mec.15036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The Neotropical region represents one of the greatest biodiversity hot spots on earth. Despite its unparalleled biodiversity, regional comparative phylogeographic studies are still scarce, with most focusing on model clades (e.g. birds) and typically examining a handful of loci. Here, we apply a genome-wide comparative phylogeographic approach to test hypotheses of codiversification of freshwater fishes in the trans-Andean region. Using target capture methods, we examined exon data for over 1,000 loci combined with complete mitochondrial genomes to study the phylogeographic history of five primary fish species (>150 individuals) collected from eight major river basins in Northwestern South America and Lower Central America. To assess their patterns of genetic structure, we inferred genealogical concordance taking into account all major aspects of phylogeography (within loci, across multiple genes, across species and among biogeographic provinces). Based on phylogeographic concordance factors, we tested four a priori biogeographic hypotheses, finding support for three of them and uncovering a novel, unexpected pattern of codiversification. The four emerging inter-riverine patterns are as follows: (a) Tuira + Atrato, (b) Ranchería + Catatumbo, (c) Magdalena system and (d) Sinú + Atrato. These patterns are interpreted as shared responses to the complex uplifting and orogenic processes that modified or sundered watersheds, allowing codiversification and speciation over geological time. We also find evidence of cryptic speciation in one of the species examined and instances of mitochondrial introgression in others. These results help further our knowledge of the historical geographic factors shaping the outstanding biodiversity of the Neotropics.
Collapse
Affiliation(s)
- Melissa Rincon-Sandoval
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Biology, The University of Oklahoma, Norman, Oklahoma
| | - Javier A Maldonado-Ocampo
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
14
|
Bouteiller XP, Verdu CF, Aikio E, Bloese P, Dainou K, Delcamp A, De Thier O, Guichoux E, Mengal C, Monty A, Pucheu M, van Loo M, Josée Porté A, Lassois L, Mariette S. A few north Appalachian populations are the source of European black locust. Ecol Evol 2019; 9:2398-2414. [PMID: 30891188 PMCID: PMC6405530 DOI: 10.1002/ece3.4776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, it is crucial to identify the source populations of the introduction. Studies in population genetics were carried out on Robinia pseudoacacia L., a North American tree which is now one of the worst invasive tree species in Europe. We realized large-scale sampling in both the invasive and native ranges: 63 populations were sampled and 818 individuals were genotyped using 113 SNPs. We identified clonal genotypes in each population and analyzed between and within range population structure, and then, we compared genetic diversity between ranges, enlarging the number of SNPs to mitigate the ascertainment bias. First, we demonstrated that European black locust was introduced from just a limited number of populations located in the Appalachian Mountains, which is in agreement with the historical documents briefly reviewed in this study. Within America, population structure reflected the effects of long-term processes, whereas in Europe it was largely impacted by human activities. Second, we showed that there is a genetic bottleneck between the ranges with a decrease in allelic richness and total number of alleles in Europe. Lastly, we found more clonality within European populations. Black locust became invasive in Europe despite being introduced from a reduced part of its native distribution. Our results suggest that human activity, such as breeding programs in Europe and the seed trade throughout the introduced range, had a major role in promoting invasion; therefore, the introduction of the missing American genetic cluster to Europe should be avoided.
Collapse
Affiliation(s)
| | - Cindy Frédérique Verdu
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Emmi Aikio
- Department of Genetics and PhysiologyUniversity of OuluOuluFinland
| | - Paul Bloese
- Department of ForestryMichigan State UniversityEast LansingMichigan
| | - Kasso Dainou
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Olivier De Thier
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Coralie Mengal
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Arnaud Monty
- Forest Management Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Marcela van Loo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Ludivine Lassois
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | |
Collapse
|
15
|
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters. Front Genet 2019; 9:693. [PMID: 30728827 PMCID: PMC6351666 DOI: 10.3389/fgene.2018.00693] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Within aquaculture industries, selection based on genomic information (genomic selection) has the profound potential to change genetic improvement programs and production systems. Genomic selection exploits the use of realized genomic relationships among individuals and information from genome-wide markers in close linkage disequilibrium with genes of biological and economic importance. We discuss the technical advances, practical requirements, and commercial applications that have made genomic selection feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping on a large scale and is of particular value for species without a reference genome or access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions to the genotyping by sequencing approach and the building of appropriate genetic resources to undertake genomic selection from first-hand experience. We describe the potential to capture large-scale commercial phenotypes based on image analysis and artificial intelligence through machine learning, as inputs for calculation of genomic breeding values. The application of genomic selection over traditional aquatic breeding programs offers significant advantages through being able to accurately predict complex polygenic traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; and negating potential limiting effects of genotype by environment interactions. Further practical advantages of genomic selection through the use of large-scale communal mating and rearing systems are highlighted, as well as presenting rate-limiting steps that impact on attaining maximum benefits from adopting genomic selection. Genomic selection is now at the tipping point where commercial applications can be readily adopted and offer significant short- and long-term solutions to sustainable and profitable aquaculture industries.
Collapse
Affiliation(s)
- Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
| | - Mehar S Khatkar
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nima Khalilisamani
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| | - Herman W Raadsma
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
16
|
Zhang D, Xia T, Dang S, Fan G, Wang Z. Investigation of Chinese Wolfberry (Lycium spp.) Germplasm by Restriction Site-Associated DNA Sequencing (RAD-seq). Biochem Genet 2018; 56:575-585. [PMID: 29876687 PMCID: PMC6223726 DOI: 10.1007/s10528-018-9861-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
Abstract
Chinese wolfberry (Lycium spp.) is an important edible and medicinal plant, with a long cultivation history. The genetic relationships among wild Lycium species and landraces have been unclear for a number of reasons, which has hindered the breeding of modern Chinese wolfberry cultivars. In this study, we collected 19 accessions of Chinese wolfberry germplasm, and constructed the genetic relationship based on RAD-seq markers. We obtained 30.32 Gb of clean data, with the average value of each sample being 1.596 Gb. The average mapping rate was 85.7%, and the average coverage depth was 6.76 X. The phylogeny results distinguished all accessions clearly. All the studied landraces shared their most recent common ancestor with L. barbarum, which indicated that L. barbarum may be involved in cultivation of these landraces. The relationship of some landraces, namely the ‘Ningqi’ series, ‘Qingqi-1’ and ‘Mengqi-1,’ has been supported by the phylogeny results, while the triploid wolfberry was shown to be based on a hybrid between ‘Ningqi-1’ and a tetraploid wolfberry. This study uncovered the genetic background of Chinese wolfberry, and developed the foundation for species classification, accession identification and protection, and the production of hybrid cultivars of wolfberry.
Collapse
Affiliation(s)
- Defang Zhang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Tao Xia
- Qinghai General Health Biotechnology Co., LTD, Xining, 810003, China
| | - Shaofei Dang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
| | - Guanghui Fan
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
| | - Zhanlin Wang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China.
| |
Collapse
|
17
|
McKinney GJ, Waples RK, Pascal CE, Seeb LW, Seeb JE. Resolving allele dosage in duplicated loci using genotyping-by-sequencing data: A path forward for population genetic analysis. Mol Ecol Resour 2018; 18:570-579. [DOI: 10.1111/1755-0998.12763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Garrett J. McKinney
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Ryan K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Carita E. Pascal
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| |
Collapse
|
18
|
Iquebal MA, Jaiswal S, Mahato AK, Jayaswal PK, Angadi UB, Kumar N, Sharma N, Singh AK, Srivastav M, Prakash J, Singh SK, Khan K, Mishra RK, Rajan S, Bajpai A, Sandhya BS, Nischita P, Ravishankar KV, Dinesh MR, Rai A, Kumar D, Sharma TR, Singh NK. MiSNPDb: a web-based genomic resources of tropical ecology fruit mango (Mangifera indica L.) for phylogeography and varietal differentiation. Sci Rep 2017; 7:14968. [PMID: 29097776 PMCID: PMC5668432 DOI: 10.1038/s41598-017-14998-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
Mango is one of the most important fruits of tropical ecological region of the world, well known for its nutritive value, aroma and taste. Its world production is >45MT worth >200 billion US dollars. Genomic resources are required for improvement in productivity and management of mango germplasm. There is no web-based genomic resources available for mango. Hence rapid and cost-effective high throughput putative marker discovery is required to develop such resources. RAD-based marker discovery can cater this urgent need till whole genome sequence of mango becomes available. Using a panel of 84 mango varieties, a total of 28.6 Gb data was generated by ddRAD-Seq approach on Illumina HiSeq 2000 platform. A total of 1.25 million SNPs were discovered. Phylogenetic tree using 749 common SNPs across these varieties revealed three major lineages which was compared with geographical locations. A web genomic resources MiSNPDb, available at http://webtom.cabgrid.res.in/mangosnps/ is based on 3-tier architecture, developed using PHP, MySQL and Javascript. This web genomic resources can be of immense use in the development of high density linkage map, QTL discovery, varietal differentiation, traceability, genome finishing and SNP chip development for future GWAS in genomic selection program. We report here world’s first web-based genomic resources for genetic improvement and germplasm management of mango.
Collapse
Affiliation(s)
- M A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
| | - Ajay Kumar Mahato
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Pawan K Jayaswal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
| | - Neeraj Kumar
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
| | - Nimisha Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anand K Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Jai Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S K Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kasim Khan
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Rupesh K Mishra
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Shailendra Rajan
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Anju Bajpai
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| | - B S Sandhya
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | | | - K V Ravishankar
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - M R Dinesh
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India.
| | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nagendra K Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|