1
|
Kjeldgaard MK, Eyer PA, McMichael CC, Bockoven AA, King JT, Hyodo A, Boutton TW, Vargo EL, Eubanks MD. Distinct colony boundaries and larval discrimination in polygyne red imported fire ants (Solenopsis invicta). Mol Ecol 2021; 31:1007-1020. [PMID: 34747530 DOI: 10.1111/mec.16264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Evaluating the factors that promote invasive ant abundance is critical to assess their ecological impact and inform their management. Many invasive ant species show reduced nestmate recognition and an absence of boundaries between unrelated nests, which allow populations to achieve greater densities due to reduced intraspecific competition. We examined nestmate discrimination and colony boundaries in introduced populations of the red imported fire ant (Solenopsis invicta; hereafter, fire ant). Fire ants occur in two social forms: monogyne (colonies with a single egg-laying queen) and polygyne (colonies with multiple egg-laying queens). In contrast with monogyne nests, polygyne nests are thought to be interconnected due to the reduced antagonism between non-nestmate polygyne workers, perhaps because polygyne workers habituate the colony to an odour unique to Gp-9b -carrying adults. However, colony boundaries and nestmate discrimination are poorly documented, particularly for worker-brood interactions. To delimit boundaries between field colonies, we correlated the exchange of a 15 N-glycine tracer dissolved in a sucrose solution with social form. We also evaluated nestmate discrimination between polygyne workers and larvae in the laboratory. Counter to our expectations, polygyne colonies behaved identically to monogyne colonies, suggesting both social forms maintain strict colony boundaries. Polygyne workers also preferentially fed larval nestmates and may have selectively cannibalized non-nestmates. The levels of relatedness among workers in polygyne colonies was higher than those previously reported in North America (mean ± standard error: 0.269 ± 0.037). Our study highlights the importance of combining genetic analyses with direct quantification of resource exchange to better understand the factors influencing ant invasions.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Collin C McMichael
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Alison A Bockoven
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Joanie T King
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Ayumi Hyodo
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Thomas W Boutton
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Burns DDR, Franks DW, Parr C, Robinson EJH. Ant colony nest networks adapt to resource disruption. J Anim Ecol 2020; 90:143-152. [PMID: 32141609 DOI: 10.1111/1365-2656.13198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/30/2020] [Indexed: 01/03/2023]
Abstract
Animal social structure is shaped by environmental conditions, such as food availability. This is important as conditions are likely to change in the future and changes to social structure can have cascading ecological effects. Wood ants are a useful taxon for the study of the relationship between social structure and environmental conditions, as some populations form large nest networks and they are ecologically dominant in many northern hemisphere woodlands. Nest networks are formed when a colony inhabits more than one nest, known as polydomy. Polydomous colonies are composed of distinct sub-colonies that inhabit spatially distinct nests and that share resources with each other. In this study, we performed a controlled experiment on 10 polydomous wood ant (Formica lugubris) colonies to test how changing the resource environment affects the social structure of a polydomous colony. We took network maps of all colonies for 5 years before the experiment to assess how the networks changes under natural conditions. After this period, we prevented ants from accessing an important food source for a year in five colonies and left the other five colonies undisturbed. We found that preventing access to an important food source causes polydomous wood ant colony networks to fragment into smaller components and begin foraging on previously unused food sources. These changes were not associated with a reduction in the growth of populations inhabiting individual nests (sub-colonies), foundation of new nests or survival, when compared with control colonies. Colony splitting likely occurred as the availability of food in each nest changed causing sub-colonies to change their inter-nest connections. Consequently, our results demonstrate that polydomous colonies can adjust to environmental changes by altering their social network.
Collapse
Affiliation(s)
- Dominic D R Burns
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Daniel W Franks
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK.,Department of Computer Science, University of York, York, UK
| | - Catherine Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK.,Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa.,Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Elva J H Robinson
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK
| |
Collapse
|
3
|
Reiner Brodetzki T, Hefetz A. Determining social and population structures requires multiple approaches: A case study of the desert ant Cataglyphis israelensis. Ecol Evol 2018; 8:12365-12374. [PMID: 30619551 PMCID: PMC6308896 DOI: 10.1002/ece3.4535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/07/2022] Open
Abstract
The remarkable diversity of ant social organization is reflected in both their life history and population kin structure. Different species demonstrate a high variation with respect to both social structure and mating strategies: from the ancestral colony type that is composed of a single queen (monogyny), singly inseminated (monoandry), to the more derived states of colonies headed by a multiply inseminated queen (polyandry), to colonies composed of multiple queens (polygyny) that are either singly or multiply inseminated. Moreover, the population structure of an ant species can range from multicoloniality to polydomy to supercoloniality, and Cataglyphis is considered to be a model genus in regard to such diversity. The present study sought to determine the social and population structure of the recently described C. israelensis species in Israel. For this purpose we employed a multidisciplinary approach, rather than the commonly used single approach that is mostly based on genetics. Our study encompassed behavior (nest insularity/openness), chemistry (composition of nestmate recognition signals and cuticular hydrocarbons), and genetics (microsatellite polymorphism). Each approach has been shown to possess both advantages and disadvantages, depending on the studied species. Our findings reveal that C. israelensis colonies are headed by a single, multiply inseminated queen and that the population structure is polydomous, with each colony comprising one main nest and several additional satellite nests. Moreover, our findings demonstrate that none of the above-noted approaches, when employed individually, is suitable or sufficient in itself for delineating population structure, thus emphasizing the importance of using multiple approaches when assessing such complex systems.
Collapse
Affiliation(s)
- Tali Reiner Brodetzki
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Abraham Hefetz
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
4
|
Robinson EJH, Barker JL. Inter-group cooperation in humans and other animals. Biol Lett 2017; 13:20160793. [PMID: 28250206 PMCID: PMC5377026 DOI: 10.1098/rsbl.2016.0793] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 01/07/2023] Open
Abstract
Social interactions are often characterized by cooperation within groups and conflict or competition between groups. In certain circumstances, however, cooperation can arise between social groups. Here, we examine the circumstances under which inter-group cooperation is expected to emerge and present examples with particular focus on groups in two well-studied but dissimilar taxa: humans and ants. Drivers for the evolution of inter-group cooperation include overarching threats from predators, competitors or adverse conditions, and group-level resource asymmetries. Resources can differ between groups in both quantity and type. Where the difference is in type, inequalities can lead to specialization and division of labour between groups, a phenomenon characteristic of human societies, but rarely seen in other animals. The ability to identify members of one's own group is essential for social coherence; we consider the proximate roles of identity effects in shaping inter-group cooperation and allowing membership of multiple groups. Finally, we identify numerous valuable avenues for future research that will improve our understanding of the processes shaping inter-group cooperation.
Collapse
Affiliation(s)
- Elva J H Robinson
- Department of Biology and York Centre for Complex Systems Analysis, University of York, York, UK
| | - Jessica L Barker
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Ellis S, Franks DW, Robinson EJH. Ecological consequences of colony structure in dynamic ant nest networks. Ecol Evol 2017; 7:1170-1180. [PMID: 28303187 PMCID: PMC5306006 DOI: 10.1002/ece3.2749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant (Formica lugubris) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.
Collapse
Affiliation(s)
- Samuel Ellis
- Centre for Research in Animal BehaviourUniversity of ExeterExeterUK
| | - Daniel W. Franks
- York Centre for Complex Systems Analysis & Department of BiologyUniversity of YorkYorkUK
| | - Elva J. H. Robinson
- York Centre for Complex Systems Analysis & Department of BiologyUniversity of YorkYorkUK
| |
Collapse
|
6
|
Ellis S, Procter DS, Buckham-Bonnett P, Robinson EJH. Inferring polydomy: a review of functional, spatial and genetic methods for identifying colony boundaries. INSECTES SOCIAUX 2016; 64:19-37. [PMID: 28255180 PMCID: PMC5310590 DOI: 10.1007/s00040-016-0534-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Identifying the boundaries of a social insect colony is vital for properly understanding its ecological function and evolution. Many species of ants are polydomous: colonies inhabit multiple, spatially separated, nests. Ascertaining which nests are parts of the same colony is an important consideration when studying polydomous populations. In this paper, we review the methods that are used to identify which nests are parts of the same polydomous colony and to determine the boundaries of colonies. Specifically, we define and discuss three broad categories of approach: identifying nests sharing resources, identifying nests sharing space, and identifying nests sharing genes. For each of these approaches, we review the theoretical basis, the limitations of the approach and the methods that can be used to implement it. We argue that all three broad approaches have merits and weaknesses, and provide a methodological comparison to help researchers select the tool appropriate for the biological question they are investigating.
Collapse
Affiliation(s)
- S. Ellis
- Department of Biology and York Centre for Complex Systems Analysis, University of York, York, UK
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - D. S. Procter
- Department of Biology and York Centre for Complex Systems Analysis, University of York, York, UK
- Centre for Exercise, Nutrition and Health Sciences, School of Policy Studies, University of Bristol, Bristol, UK
| | - P. Buckham-Bonnett
- Department of Biology and York Centre for Complex Systems Analysis, University of York, York, UK
| | - E. J. H. Robinson
- Department of Biology and York Centre for Complex Systems Analysis, University of York, York, UK
| |
Collapse
|
7
|
Procter DS, Cottrell JE, Watts K, A'Hara SW, Hofreiter M, Robinson EJH. Does cooperation mean kinship between spatially discrete ant nests? Ecol Evol 2016; 6:8846-8856. [PMID: 28035273 PMCID: PMC5192893 DOI: 10.1002/ece3.2590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/26/2022] Open
Abstract
Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics. In many social insects, the colony can extend to multiple socially connected but spatially separate nests (polydomy). Social connections, such as trails between nests, promote cooperation and resource exchange, and we predict that workers from socially connected nests will have higher internest relatedness than those from socially unconnected, and noncooperating, nests. We measure social connections, resource exchange, and internest genetic relatedness in the polydomous wood ant Formica lugubris to test whether (1) socially connected but spatially separate nests cooperate, and (2) high internest relatedness is the underlying driver of this cooperation. Our results show that socially connected nests exhibit movement of workers and resources, which suggests they do cooperate, whereas unconnected nests do not. However, we find no difference in internest genetic relatedness between socially connected and unconnected nest pairs, both show high kinship. Our results suggest that neighboring pairs of connected nests show a social and cooperative distinction, but no genetic distinction. We hypothesize that the loss of a social connection may initiate ecological divergence within colonies. Genetic divergence between neighboring nests may build up only later, as a consequence rather than a cause of colony separation.
Collapse
Affiliation(s)
- Duncan S. Procter
- York Centre for Complex Systems Analysis & Department of BiologyUniversity of YorkYorkUK
- Centre for Exercise, Nutrition and Health SciencesSchool for Policy StudiesUniversity of BristolBristolUK
| | | | | | | | - Michael Hofreiter
- Institut für Biochemie und BiologieUniversität PotsdamPotsdamGermany
| | - Elva J. H. Robinson
- York Centre for Complex Systems Analysis & Department of BiologyUniversity of YorkYorkUK
| |
Collapse
|